基于自适应蝠鲼觅食优化算法的分布式电源选址定容

展开
  • 1.昆明理工大学 电力工程学院, 昆明 650500
    2.华南理工大学 电力学院, 广州 510640
    3.广东省电网智能量测与先进计量企业重点实验室, 广州 510640
杨 博(1988-),男,云南省昆明市人,教授,主要从事新能源发电/储能系统优化与控制,以及人工智能在智能电网中的应用研究.

收稿日期: 2021-10-08

  网络出版日期: 2021-12-30

基金资助

国家自然科学基金(61963020);云南省基础研究计划(202001AT070096);国家自然科学基金委员会-国家电网公司智能电网联合基金资助项目(U2066212)

Optimal Sizing and Placement of Distributed Generation Based on Adaptive Manta Ray Foraging Optimization

Expand
  • 1. School of Electric Power Engineering, Kunming University of Science and Technology, Kunming 650500, China
    2. School of Electric Power Engineering, South China University of Technology, Guangzhou 510640, China
    3. Guangdong Provincial Key Laboratory of Intelligent Measurement and Advanced Metering of Power Grid, Guangzhou 510640, China

Received date: 2021-10-08

  Online published: 2021-12-30

摘要

建立了考虑有功功率损耗、电压分布、污染排放、分布式电源(DG)成本以及气象条件的DG选址定容规划模型,其中选址、定容工作分别是一个离散、连续变量,是一个高度非线性、含离散优化变量的复杂模型.因此,应用自适应蝠鲼觅食优化 (AMRFO) 算法获取最优Pareto解集,其具有丰富多样的搜索机制,个体更新机制以及先进的Pareto解筛选机制,针对该模型能够获得更加优异的高质量解.为回避权重系数人为设置主观性带来的影响,采用基于马氏距离的理想决策点法进行Pareto最优解集决策.最后,基于IEEE 33, 69节点配电网和孤网运行的IEEE 33, 69节点配电网进行仿真分析.研究结果表明:与传统的多目标智能优化算法相比,AMRFO算法能够获得分布更加广泛、均匀的Pareto前沿,在兼顾经济性的同时,配电网的电压分布、有功功率损耗的改善效果显著优于其他算法.

本文引用格式

杨博, 俞磊, 王俊婷, 束洪春, 曹璞璘, 余涛 . 基于自适应蝠鲼觅食优化算法的分布式电源选址定容[J]. 上海交通大学学报, 2021 , 55(12) : 1673 -1688 . DOI: 10.16183/j.cnki.jsjtu.2021.397

Abstract

In this paper, an optimal sizing and placement model for distributed generation (DG) is established, which includes active power losses, voltage profile, pollution emission, DG costs, and meteorological conditions. Since optimizing placement and sizing are discrete and continuous variables respectively, the model established is a highly nonlinear complex one with discrete optimization variables. Therefore, the adaptive manta ray foraging optimization (AMRFO) algorithm is applied to obtain the optimal Pareto front, which has a rich and diverse search mechanism, individual updating mechanism, and advanced Pareto solution selection mechanism. For this model, a better solution of high quality can be obtained. In order to avoid the influence of subjective setting of weight coefficient, the ideal point method based on Mahalanobis distance is used to make Pareto front decision. Finally, the simulation based on the IEEE 33, 69-bus distribution network and the IEEE 33, 69-bus distribution network in isolated network operation are implemented. The results show that compared with the traditional multi-objective intelligent optimization algorithm, AMRFO algorithm can obtain a more widely distributed and uniform Pareto front. While considering the economy, the optimized distribution network voltage profile and active power losses can be significantly improved.

参考文献

[1] YANG B, YU T, SHU H C, et al. Adaptive fractional-order PID control of PMSG-based wind energy conversion system for MPPT using linear observers[J]. International Transactions on Electrical Energy Systems, 2019, 29(1):2697.
[2] 孙立明, 杨博. 蓄电池/超导混合储能系统非线性鲁棒分数阶控制[J]. 电力系统保护与控制, 2020, 48(22):76-83.
[2] SUN Liming, YANG Bo. Nonlinear robust fractional-order control of battery/SMES hybrid energy storage systems[J]. Power System Protection and Control, 2020, 48(22):76-83.
[3] YANG B, WANG J T, CHEN Y X, et al. Optimal sizing and placement of energy storage system in power grids: A state-of-the-art one-stop handbook[J]. Journal of Energy Storage, 2020, 32:101814.
[4] 付学谦, 陈皓勇, 刘国特, 等. 分布式电源电能质量综合评估方法[J]. 中国电机工程学报, 2014, 34(25):4270-4276.
[4] FU Xueqian, CHEN Haoyong, LIU Guote, et al. Power quality comprehensive evaluation method for distributed generation[J]. Proceedings of the Chinese Society for Electrical Engineering, 2014, 34(25):4270-4276.
[5] 薛帅, 高厚磊, 郭一飞, 等. 大规模海上风电场的双层分布式有功控制[J]. 电力系统保护与控制, 2021, 49(3):1-9.
[5] XUE Shuai, GAO Houlei, GUO Yifei, et al. Bi-level distributed active power control for a large-scale wind farm[J]. Power System Protection and Control, 2021, 49(3):1-9.
[6] 沈鑫, 曹敏. 分布式电源并网对于配电网的影响研究[J]. 电工技术学报, 2015, 30(S1):346-351.
[6] SHEN Xin, CAO Min. Research on the influence of distributed power grid for distribution network[J]. Transactions of China Electrotechnical Society, 2015, 30(S1):346-351.
[7] 曲绍杰, 王绍然, 刘明波, 等. 基于互补内点法的多目标静态电压稳定约束无功规划[J]. 电力系统保护与控制, 2010, 38(23):49-54.
[7] QU Shaojie, WANG Shaoran, LIU Mingbo, et al. Static voltage stability constrained multi-objective reactive power planning based on complementary interior point method[J]. Power System Protection and Control, 2010, 38(23):49-54.
[8] YANG B, YU L, CHEN Y X, et al. Modelling, applications, and evaluations of optimal sizing and placement of distributed generations: A critical state-of-the-art survey[J]. International Journal of Energy Research, 2021, 45(3):3615-3642.
[9] ABU-MOUTI F S, EL-HAWARY M E. Optimal distributed generation allocation and sizing in distribution systems via artificial bee colony algorithm[J]. IEEE Transactions on Power Delivery, 2011, 26(4):2090-2101.
[10] QUADRI I A, BHOWMICK S, JOSHI D. A hybrid teaching-learning-based optimization technique for optimal DG sizing and placement in radial distribution systems[J]. Soft Computing, 2019, 23(20):9899-9917.
[11] 李珂, 邰能灵, 张沈习, 等. 考虑相关性的分布式电源多目标规划方法[J]. 电力系统自动化, 2017, 41(9):51-57.
[11] LI Ke, TAI Nengling, ZHANG Shenxi, et al. Multi-objective planning method of distributed generators considering correlations[J]. Automation of Electric Power Systems, 2017, 41(9):51-57.
[12] 任洪伟, 韩丛英, 裴玮, 等. 基于多目标优化模型的分布式电源选址方案研究[J]. 电力系统保护与控制, 2013, 41(24):64-69.
[12] REN Hongwei, HAN Congying, PEI Wei, et al. Research on distributed generation locating based on multi-objective optimization model[J]. Power System Protection and Control, 2013, 41(24):64-69.
[13] KEFAYAT M, LASHKAR ARA A, NABAVI NIAKI S A. A hybrid of ant colony optimization and artificial bee colony algorithm for probabilistic optimal placement and sizing of distributed energy resources[J]. Energy Conversion and Management, 2015, 92:149-161.
[14] 徐俊杰. 元启发式优化算法: 理论阐释与应用[M]. 合肥: 中国科学技术大学出版社, 2015.
[14] XU Junjie. Theoretical interpretation and application: Meta-heuristic optimization algorithm[M]. Hefei: University of Science and Technology of China Press, 2015.
[15] 徐迅, 陈楷, 龙禹, 等. 考虑环境成本和时序特性的微网多类型分布式电源选址定容规划[J]. 电网技术, 2013, 37(4):914-921.
[15] XU Xun, CHEN Kai, LONG Yu, et al. Optimal site selection and capacity determination of multi-types of distributed generation in microgrid considering environment cost and timing characteristics[J]. Power System Technology, 2013, 37(4):914-921.
[16] DOAGOU-MOJARRAD H, GHAREHPETIAN G B, RASTEGAR H, et al. Optimal placement and sizing of DG (distributed generation) units in distribution networks by novel hybrid evolutionary algorithm[J]. Energy, 2013, 54:129-138.
[17] UGRANLı F, KARATEPE E. Multiple-distributed generation planning under load uncertainty and different penetration levels[J]. International Journal of Electrical Power & Energy Systems, 2013, 46:132-144.
[18] 吴小刚, 刘宗歧, 田立亭, 等. 基于改进多目标粒子群算法的配电网储能选址定容[J]. 电网技术, 2014, 38(12):3405-3411.
[18] WU Xiaogang, LIU Zongqi, TIAN Liting, et al. Energy storage device locating and sizing for distribution network based on improved multi-objective particle swarm optimizer[J]. Power System Technology, 2014, 38(12):3405-3411.
[19] ZHAO W G, ZHANG Z X, WANG L Y. Manta ray foraging optimization: An effective bio-inspired optimizer for engineering applications[J]. Engineering Applications of Artificial Intelligence, 2020, 87:103300.
[20] 杨蕾, 吴琛, 黄伟, 等. 含高比例风光新能源电网的多目标无功优化算法[J]. 电力建设, 2020, 41(7):100-109.
[20] YANG Lei, WU Chen, HUANG Wei, et al. Pareto-based multi-objective reactive power optimization for power grid with high-penetration wind and solar renewable energies[J]. Electric Power Construction, 2020, 41(7):100-109.
[21] YANEZ-BORJAS J J, MACHORRO-LOPEZ J M, CAMARENA-MARTINEZ D, et al. A new damage index based on statistical features, PCA, and mahalanobis distance for detecting and locating cables loss in a cable-stayed bridge[J]. International Journal of Structural Stability and Dynamics, 2021, 21(9):2150127.
[22] 刘煌煌, 雷金勇, 蔡润庆, 等. 基于SVM-MOPSO混合智能算法的配电网分布式电源规划[J]. 电力系统保护与控制, 2014, 42(10):46-54.
[22] LIU Huanghuang, LEI Jinyong, CAI Runqing, et al. Distributed generation planning in distribution network based on hybrid intelligent algorithm by SVM-MOPSO[J]. Power System Protection and Control, 2014, 42(10):46-54.
[23] GOSWAMI S K, BASU S K. A new algorithm for the reconfiguration of distribution feeders for loss minimization[J]. IEEE Transactions on Power Delivery, 1992, 7(3):1484-1491.
[24] 李亮, 唐巍, 白牧可, 等. 考虑时序特性的多目标分布式电源选址定容规划[J]. 电力系统自动化, 2013, 37(3):58-63.
[24] LI Liang, TANG Wei, BAI Muke, et al. Multi-objective locating and sizing of distributed generators based on time-sequence characteristics[J]. Automation of Electric Power Systems, 2013, 37(3):58-63.
[25] 王丽萍, 邱飞岳. 复杂多目标问题的优化方法及应用[M]. 北京: 科学出版社, 2018.
[25] WANG Liping, QIU Feiyue. Complex multi-objective optimization and it’s applications[M]. Beijing: Science Press, 2018.
[26] 胡旺, YEN Gary G, 张鑫. 基于Pareto熵的多目标粒子群优化算法[J]. 软件学报, 2014, 25(5):1025-1050.
[26] HU Wang, YEN Gary G, ZHANG Xin. Multiobjective particle swarm optimization based on Pareto entropy[J]. Journal of Software, 2014, 25(5):1025-1050.
文章导航

/