“双碳”背景下线间潮流控制器多目标协调控制策略

展开
  • 1.国网江苏省电力有限公司经济技术研究院,南京 210008
    2.东南大学 电气工程学院,南京 210096
蔡 晖(1984-),男,江苏省盐城市人,高级工程师,主要研究方向为电力系统规划技术.电话(Tel.):15722923765;E-mail: caihui300@hotmail.com.

收稿日期: 2021-07-28

  网络出版日期: 2021-12-30

基金资助

国网江苏省电力有限公司科技项目(J2021015)

A Coordination Control Strategy of Interline Power Flow Controller in Carbon Peaking and Carbon Neutrality

Expand
  • 1. Economic Research Institute, State Grid Jiangsu Electric Power Co., Ltd., Nanjing 210008, China
    2. School of Electrical Engineering, Southeast University, Nanjing 210096, China

Received date: 2021-07-28

  Online published: 2021-12-30

摘要

“碳达峰、碳中和”目标对考虑安全性和稳定性的电力系统低碳运行提出了更高要求,新能源的大规模接入容易引发电网潮流分布不均与机电振荡等问题.作为第3代柔性交流输电系统(FACTS)的代表性设备,线间潮流控制器(IPFC)具有强大的潮流调控、振荡阻尼和暂态稳定控制能力,但在不同工况下关注的主要目标不同,且目标间存在着矛盾关系.首先,基于改进相对增益矩阵(MRGA)理论, 线性化含IPFC的系统状态方程,量化分析目标间的相互作用,选择附加控制器的叠加位置,削弱稳态调控与动态控制间的交互影响.其次,针对暂态过程,结合模糊逻辑理论设计了IPFC多目标协调控制器.最后,通过粒子群算法优化了控制器参数,在提高暂态稳定和小干扰稳定的同时,减少暂态过程中的潮流超调,增强了IPFC在不同系统运行工况下的协调控制能力,有利于解决“双碳”背景下电力系统负荷大、惯性低、波动随机所带来的能源传输消纳与安全稳定控制等难题.

本文引用格式

蔡晖, 高伯阳, 祁万春, 吴熙, 谢珍建, 黄俊辉 . “双碳”背景下线间潮流控制器多目标协调控制策略[J]. 上海交通大学学报, 2021 , 55(12) : 1608 -1618 . DOI: 10.16183/j.cnki.jsjtu.2021.321

Abstract

The goal of “carbon peaking and carbon neutrality” puts forward higher requirements for low-carbon operation of power system considering security and stability. The large-scale access of new energy easily leads to problems such as uneven distribution of power flow and electromechanical oscillation. As the representative device of the third-generation flexible AC transmission system (FACTS), interline power flow controller (IPFC) is greatly capable of power flow control, damping control and transient stability control, but the main objectives of IPFC vary considerably under different working conditions, and there is contradiction between the goals. First, based on the improved relative gain matrix (MRGA) theory, the system state equation with IPFC was linearized, the interaction between targets was quantitatively analyzed, the superposition position of the additional controller was selected, and the interaction between steady-state control and dynamic control was weakened. Then, for the transient process, combined with fuzzy logic theory, the IPFC multi-objective coordinated controller was designed. Finally, the controller parameters were optimized using the particle swarm algorithm. While improving the transient stability and small disturbance stability, the controller reduced the power flow overshoot during the transient process and enhanced the coordinated control ability of IPFC under different system operating conditions. It was helpful to solve the problems of energy transmission and consumption, safety and stability control caused by the large load, low inertia, and random fluctuations of the power system under the “dual carbon” background.

参考文献

[1] 舒印彪, 张智刚, 郭剑波, 等. 新能源消纳关键因素分析及解决措施研究[J]. 中国电机工程学报, 2017, 37(1):1-9.
[1] SHU Yinbiao, ZHANG Zhigang, GUO Jianbo, et al. Study on key factors and solution of renewable energy accommodation[J]. Proceedings of the CSEE, 2017, 37(1):1-9.
[2] 李国庆, 宋莉, 李筱婧. 计及FACTS装置的可用输电能力计算[J]. 中国电机工程学报, 2009, 29(19):36-42.
[2] LI Guoqing, SONG Li, LI Xiaojing. Available transfer capability calculation considering FACTS controllers[J]. Proceedings of the CSEE, 2009, 29(19):36-42.
[3] 谢小荣, 姜齐荣. 柔性交流输电系统的原理与应用[M]. 北京: 清华大学出版社, 2014.
[3] XIE Xiaorong, JIANG Qirong. Flexible AC transmission systems: Principles and applications[M]. Beijing: Tsinghua University Press, 2014.
[4] NIKOOBAKHT A, AGHAEI J, PARVANIA M, et al. Contribution of FACTS devices in power systems security using MILP-based OPF[J]. IET Generation, Transmission & Distribution, 2018, 12(15):3744-3755.
[5] 吴熙, 殷天然, 祁万春, 等. 考虑新型拓扑结构的统一潮流控制器五端功率注入模型[J]. 电力系统自动化, 2018, 42(19):155-162.
[5] WU Xi, YIN Tianran, QI Wanchun, et al. Five-terminal power injection model of UPFC considering novel topology structure[J]. Automation of Electric Power Systems, 2018, 42(19):155-162.
[6] BHOWMICK S, DAS B, KUMAR N. An indirect UPFC model to enhance reusability of Newton power-flow codes[J]. IEEE Transactions on Power Delivery, 2008, 23(4):2079-2088.
[7] LAKA A, BARRENA J A, CHIVITE-ZABALZA J, et al. Analysis and improved operation of a PEBB-based voltage-source converter for FACTS applications[J]. IEEE Transactions on Power Delivery, 2013, 28(3):1330-1338.
[8] NITHYA G, JANANISRI D, SOWJANYA M. Performance assessment of IPFC in power transmission systems[C]// 2014 IEEE National Conference on Emerging Trends In New & Renewable Energy Sources and Energy Management (NCET NRES EM). Piscataway, NJ, USA: IEEE, 2014: 83-86.
[9] GYUGYI L, SEN K K, SCHAUDER C D. The interline power flow controller concept: A new approach to power flow management in transmission systems[J]. IEEE Transactions on Power Delivery, 1999, 14(3):1115-1123.
[10] ZHANG Y, ZHANG Y, CHEN C. A novel power injection model of IPFC for power flow analysis inclusive of practical constraints[J]. IEEE Transactions on Power Systems, 2006, 21(4):1550-1556.
[11] ZARGHAMI M, CROW M L. The existence of multiple equilibria in the UPFC power injection model[J]. IEEE Transactions on Power Systems, 2007, 22(4):2280-2282.
[12] 祁万春, 高伯阳, 孙文涛, 等. 基于PSASP的IPFC功率注入模型研究[J]. 电力电容器与无功补偿, 2019, 40(6):152-158.
[12] QI Wanchun, GAO Boyang, SUN Wentao, et al. Study on IPFC power injection model based on PSASP[J]. Power Capacitor & Reactive Power Compensation, 2019, 40(6):152-158.
[13] 高伯阳, 吴熙, 王亮, 等. 线间潮流控制器技术现状分析及展望[J]. 浙江电力, 2019, 38(2):7-14.
[13] GAO Boyang, WU Xi, WANG Liang, et al. Technical status and prospect of interline power flow controller[J]. Zhejiang Electric Power, 2019, 38(2):7-14.
[14] FARDANESH B, SCHUFF A. Dynamic studies of the NYS transmission system with the Marcy CSC in the UPFC and IPFC configurations[C]// 2003 IEEE PES Transmission and Distribution Conference and Exposition. Piscataway, NJ, USA: IEEE, 2003: 1126-1130.
[15] AZBE V, MIHALIC R. The control strategy for an IPFC based on the energy function[J]. IEEE Transactions on Power Systems, 2008, 23(4):1662-1669.
[16] 张曼, 张春朋, 姜齐荣, 等. 统一潮流控制器多目标协调控制策略研究[J]. 电网技术, 2014, 38(4):1008-1013.
[16] ZHANG Man, ZHANG Chunpeng, JIANG Qirong, et al. Study on multi-objective coordinated control strategy of unified power flow controller[J]. Power System Technology, 2014, 38(4):1008-1013.
[17] 张鹏翔, 曹一家, 王海风, 等. 相对增益矩阵方法在柔性交流输电系统多变量控制器交互影响分析中的应用[J]. 中国电机工程学报, 2004, 24(7):13-17.
[17] ZHANG Pengxiang, CAO Yijia, WANG Haifeng, et al. Application of relative gain array method to analyze interaction of multi-fuctional facts controllers[J]. Proceedings of the CSEE, 2004, 24(7):13-17.
[18] 江全元, 邹振宇, 吴昊, 等. 基于相对增益矩阵原理的柔性交流输电系统控制器交互影响分析[J]. 中国电机工程学报, 2005, 25(11):23-28.
[18] JIANG Quanyuan, ZOU Zhenyu, WU Hao, et al. Interaction analysis of facts controllers based on rga principle[J]. Proceedings of the CSEE, 2005, 25(11):23-28.
[19] PARIMI A M, ELAMVAZUTHI I, SAAD N. Damping of inter area oscillations using interline power flow controller based damping controllers[C]// 2008 IEEE 2nd International Power and Energy Conference. Piscataway, NJ, USA: IEEE, 2008: 67-72.
[20] 黄振宇, 刁勤华, 孙岩, 等. UPFC的模糊调制控制研究[J]. 电力系统自动化, 2000, 24(2):36-41.
[20] HUANG Zhenyu, DIAO Qinhua, SUN Yan, et al. Study on fuzzy modulation control of UPFC[J]. Automation of Electric Power System, 2000, 24(2):36-41.
[21] 冯增喜, 任庆昌, 彭彦平, 等. 基于单纯形法的MFAC参数寻优[J]. 控制工程, 2016, 23(3):405-410.
[21] FENG Zengxi, REN Qingchang, PENG Yanping, et al. Optimizing the parameters of MFAC based on the simplex method[J]. Control Engineering of China, 2016, 23(3):405-410.
文章导航

/