收稿日期: 2021-09-07
网络出版日期: 2021-12-30
基金资助
四川省科技计划资助项目(2021YFSY0051)
Low-Carbon Economic Dispatch of Multi-Energy Park Considering High Proportion of Renewable Energy
Received date: 2021-09-07
Online published: 2021-12-30
为提高清洁能源利用率和降低碳排放,缓解全球能源危机和温室效应,提出一种考虑高比例新能源消纳的多能源园区日前低碳经济调度模型.首先,向园区引入储气设备和储热设备后,进一步挖掘能源耦合设备的潜力,探究电动汽车充电方式的影响;其次,基于阶梯型价格曲线建立了价格型联合热电需求响应模型;然后,考虑综合能源系统低碳运行,构建了碳捕集和储碳设备模型;最后,提出多能源园区日前低碳经济调度混合整数线性规划模型.算例分析表明,所提模型能提高能源利用率和园区调度灵活性,有效降低园区碳排放量,增加园区收益,促进高比例新能源的消纳.
关键词: 新能源消纳; 电动汽车; 价格型联合热电需求响应; 碳交易; 经济调度
吕祥梅, 刘天琪, 刘绚, 何川, 南璐, 曾红 . 考虑高比例新能源消纳的多能源园区日前低碳经济调度[J]. 上海交通大学学报, 2021 , 55(12) : 1586 -1597 . DOI: 10.16183/j.cnki.jsjtu.2021.339
To improve the utilization rate of clean energy, reduce carbon emissions, and alleviate the global energy crisis and greenhouse effect, a low-carbon economic dispatch model of multi-energy park considering high proportion of new energy consumption is proposed. First, after introducing the gas storage and heat storage equipment to the park, the potential of energy coupled devices is further tapped, and the impact of electric vehicle charging mode is explored. Then, based on the stepwise price curve, a price-based integrated thermo-electric demand response model is established. Moreover, considering the low-carbon operation of the integrated energy system, a carbon capture and storage equipment model is built. Furthermore, a mixed integer linear programming model for low-carbon economic dispatch before the day of the multi-energy park is proposed. The example analysis shows that the proposed model can improve the energy utilization rate and the scheduling flexibility of the park, effectively reduce the carbon emissions of the park, increase the income of the park, and promote the consumption of high proportion of new energy.
[1] | 孙秋野, 胡杰, 胡旌伟, 等. 中国特色能源互联网三网融合及其“自-互-群”协同管控技术框架[J]. 中国电机工程学报, 2021, 41(1):40-51. |
[1] | SUN Qiuye, HU Jie, HU Jingwei, et al. Triple play of energy Internet with Chinese characteristics and its self-mutual-group collaboration control technology framework[J]. Proceedings of the Chinese Society for Electrical Engineering, 2021, 41(1):40-51. |
[2] | 彭克, 张聪, 徐丙垠, 等. 多能协同综合能源系统示范工程现状与展望[J]. 电力自动化设备, 2017, 37(6):3-10. |
[2] | PENG Ke, ZHANG Cong, XU Bingyin, et al. Status and prospect of pilot projects of integrated energy system with multi-energy collaboration[J]. Electric Power Automation Equipment, 2017, 37(6):3-10. |
[3] | 周孝信, 陈树勇, 鲁宗相, 等. 能源转型中我国新一代电力系统的技术特征[J]. 中国电机工程学报, 2018, 38(7):1893-1904. |
[3] | ZHOU Xiaoxin, CHEN Shuyong, LU Zongxiang, et al. Technology features of the new generation power system in China[J]. Proceedings of the Chinese Society for Electrical Engineering, 2018, 38(7):1893-1904. |
[4] | 程耀华, 张宁, 康重庆, 等. 低碳多能源系统的研究框架及展望[J]. 中国电机工程学报, 2017, 37(14):4060-4069. |
[4] | CHENG Yaohua, ZHANG Ning, KANG Chongqing, et al. Research framework and prospects of low-carbon multiple energy systems[J]. Proceedings of the Chinese Society for Electrical Engineering, 2017, 37(14):4060-4069. |
[5] | 艾芊, 郝然. 多能互补、集成优化能源系统关键技术及挑战[J]. 电力系统自动化, 2018, 42(4):2-10. |
[5] | AI Qian, HAO Ran. Key technologies and challenges for multi-energy complementarity and optimization of integrated energy system[J]. Automation of Electric Power Systems, 2018, 42(4):2-10. |
[6] | 艾欣, 陈政琦, 孙英云, 等. 基于需求响应的电-热-气耦合系统综合直接负荷控制协调优化研究[J]. 电网技术, 2019, 43(4):1160-1171. |
[6] | AI Xin, CHEN Zhengqi, SUN Yingyun, et al. Study on integrated DLC coordination optimization of electric-thermal-gas coupling system considering demand response[J]. Power System Technology, 2019, 43(4):1160-1171. |
[7] | 崔杨, 闫石, 仲悟之, 等. 含电转气的区域综合能源系统热电优化调度[J]. 电网技术, 2020, 44(11):4254-4264. |
[7] | CUI Yang, YAN Shi, ZHONG Wuzhi, et al. Optimal thermoelectric dispatching of regional integrated energy system with power-to-gas[J]. Power System Technology, 2020, 44(11):4254-4264. |
[8] | 张儒峰, 姜涛, 李国庆, 等. 考虑电转气消纳风电的电-气综合能源系统双层优化调度[J]. 中国电机工程学报, 2018, 38(19):5668-5678. |
[8] | ZHANG Rufeng, JIANG Tao, LI Guoqing, et al. Bi-level optimization dispatch of integrated electricity-natural gas systems considering P2G for wind power accommodation[J]. Proceedings of the Chinese Society for Electrical Engineering, 2018, 38(19):5668-5678. |
[9] | 郑亚锋, 魏振华, 王春雨. 计及储热装置的综合能源系统分层优化调度[J]. 中国电机工程学报, 2019, 39(S1):36-43. |
[9] | ZHENG Yafeng, WEI Zhenhua, WANG Chunyu. Hierarchical optimal dispatch for integrated energy system with thermal storage device[J]. Proceedings of the Chinese Society for Electrical Engineering, 2019, 39(S1):36-43. |
[10] | 张淑婷, 陆海, 林小杰, 等. 考虑储能的工业园区综合能源系统日前优化调度[J]. 高电压技术, 2021, 47(1):93-103. |
[10] | ZHANG Shuting, LU Hai, LIN Xiaojie, et al. Operation scheduling optimization of integrated-energy system in industrial park in consideration of energy storage[J]. High Voltage Engineering, 2021, 47(1):93-103. |
[11] | 崔杨, 姜涛, 仲悟之, 等. 电动汽车与热泵促进风电消纳的区域综合能源系统经济调度方法[J]. 电力自动化设备, 2021, 41(2):1-7. |
[11] | CUI Yang, JIANG Tao, ZHONG Wuzhi, et al. Economic dispatch approach of RIES for electric vehicle and heat pump to promote wind power accommodation[J]. Electric Power Automation Equipment, 2021, 41(2):1-7. |
[12] | 林润. 计及电动汽车的综合能源系统能量管理优化研究[D]. 北京: 华北电力大学(北京), 2020. |
[12] | LIN Run. Research on energy management optimization of integrated energy system considering electric vehicle[D]. Beijing: North China Electric Power University (Beijing), 2020. |
[13] | 崔杨, 曾鹏, 王铮, 等. 计及电价型需求侧响应含碳捕集设备的电-气-热综合能源系统低碳经济调度[J]. 电网技术, 2021, 45(2):447-461. |
[13] | CUI Yang, ZENG Peng, WANG Zheng, et al. Low-carbon economic dispatch of electricity-gas-heat integrated energy system with carbon capture equipment considering price-based demand response[J]. Power System Technology, 2021, 45(2):447-461. |
[14] | 徐箭, 胡佳, 廖思阳, 等. 考虑网络动态特性与综合需求响应的综合能源系统协同优化[J]. 电力系统自动化, 2021, 45(12):40-48. |
[14] | XU Jian, HU Jia, LIAO Siyang, et al. Coordinated optimization of integrated energy system considering dynamic characteristics of network and integrated demand response[J]. Automation of Electric Power Systems, 2021, 45(12):40-48. |
[15] | 刘敦楠, 徐尔丰, 刘明光, 等. 面向分布式电源就地消纳的园区分时电价定价方法[J]. 电力系统自动化, 2020, 44(20):19-28. |
[15] | LIU Dunnan, XU Erfeng, LIU Mingguang, et al. TOU pricing method for park considering local consumption of distributed generator[J]. Automation of Electric Power Systems, 2020, 44(20):19-28. |
[16] | 李鹏, 吴迪凡, 李雨薇, 等. 基于综合需求响应和主从博弈的多微网综合能源系统优化调度策略[J]. 中国电机工程学报, 2021, 41(4):1307-1321. |
[16] | LI Peng, WU Difan, LI Yuwei, et al. Optimal dispatch of multi-microgrids integrated energy system based on integrated demand response and stackelberg game[J]. Proceedings of the Chinese Society for Electrical Engineering, 2021, 41(4):1307-1321. |
[17] | 刘天琪, 张琪, 何川. 考虑气电联合需求响应的气电综合能源配网系统协调优化运行[J]. 中国电机工程学报, 2021, 41(5):1664-1677. |
[17] | LIU Tianqi, ZHANG Qi, HE Chuan. Coordinated optimal operation of electricity and natural gas distribution system considering integrated electricity-gas demand response[J]. Proceedings of the Chinese Society for Electrical Engineering, 2021, 41(5):1664-1677. |
[18] | 康丽虹, 贾燕冰, 田丰, 等. 含LNG冷能利用的综合能源系统低碳经济调度[EB/OL].(2021-04-20)[2021-10-21]. https://doi.org/10.13336/j.1003-6520.hve.20201844. |
[18] | KANG Lihong, JIA Yanbing, TIAN Feng, et al. Low-carbon economic dispatch of integrated energy system containing LNG cold energy utilization[EB/OL].(2021-04-20)[2021-10-21]. https://doi.org/10.13336/j.1003-6520.hve.20201844. |
[19] | 田丰, 贾燕冰, 任海泉, 等. 考虑碳捕集系统的综合能源系统“源-荷”低碳经济调度[J]. 电网技术, 2020, 44(9):3346-3355. |
[19] | TIAN Feng, JIA Yanbing, REN Haiquan, et al. “Source-load” low-carbon economic dispatch of integrated energy system considering carbon capture system[J]. Power System Technology, 2020, 44(9):3346-3355. |
[20] | 崔杨, 曾鹏, 仲悟之, 等. 考虑富氧燃烧技术的电-气-热综合能源系统低碳经济调度[J]. 中国电机工程学报, 2021, 41(2):592-608. |
[20] | CUI Yang, ZENG Peng, ZHONG Wuzhi, et al. Low-carbon economic dispatch of electro-gas-thermal integrated energy system based on oxy-combustion technology[J]. Proceedings of the Chinese Society for Electrical Engineering, 2021, 41(2):592-608. |
[21] | 刘天琪, 卢俊, 何川, 等. 考虑联合热电需求响应与高比例新能源消纳的多能源园区日前经济调度[J]. 电力自动化设备, 2019, 39(8):261-268. |
[21] | LIU Tianqi, LU Jun, HE Chuan, et al. Day-ahead economic dispatch of multi-energy parks considering integrated thermo-electric demand response and high penetration of renewable energy[J]. Electric Power Automation Equipment, 2019, 39(8):261-268. |
[22] | 卫志农, 张思德, 孙国强, 等. 基于碳交易机制的电—气互联综合能源系统低碳经济运行[J]. 电力系统自动化, 2016, 40(15):9-16. |
[22] | WEI Zhinong, ZHANG Side, SUN Guoqiang, et al. Carbon trading based low-carbon economic operation for integrated electricity and natural gas energy system[J]. Automation of Electric Power Systems, 2016, 40(15):9-16. |
[23] | 瞿凯平, 黄琳妮, 余涛, 等. 碳交易机制下多区域综合能源系统的分散调度[J]. 中国电机工程学报, 2018, 38(3):697-707. |
[23] | QU Kaiping, HUANG Linni, YU Tao, et al. Decentralized dispatch of multi-area integrated energy systems with carbon trading[J]. Proceedings of the Chinese Society for Electrical Engineering, 2018, 38(3):697-707. |
[24] | WU L. Impact of price-based demand response on market clearing and locational marginal prices[J]. IET Generation, Transmission & Distribution, 2013, 7(10):1087-1095. |
[25] | 李媛. 含电动汽车的综合能源园区能源定价与管理策略[D]. 杭州: 浙江大学, 2019. |
[25] | LI Yuan. Energy pricing and management strategies for an integrated community energy system with electric vehicles[D]. Hangzhou: Zhejiang University, 2019. |
/
〈 |
|
〉 |