3D电子封装锡晶须建模与实验验证

展开
  • 1.奥本大学 机械工程系, 美国 奥本 36849
    2.上海海洋大学 工程学院,上海 201306
王泽坤(1990-),男,上海市人,博士生,从事晶须材料电子原理、可再生能源、智能算法和图像处理等研究.

收稿日期: 2021-01-18

  网络出版日期: 2021-12-03

基金资助

国家自然科学基金(41976194);上海市工程技术研究中心建设计划(19DZ2254800);美国奥本大学CAVE3项目

Modeling and Experimental Study of Tin Whiskers for 3D Electronic Packaging

Expand
  • 1. Department of Mechanical Engineering, Auburn University, Auburn 36849, USA
    2. College of Engineering Science and Technology, Shanghai Ocean University, Shanghai 201306, China

Received date: 2021-01-18

  Online published: 2021-12-03

摘要

压应力释放和原子扩散对3D电子封装中晶须的生长具有重要影响,压应力也是动态再结晶(DRX)的主要因素之一.利用基于有限元的锡晶须生长机理和行为的数学模型,仿真研究具有典型物理尺寸和结构形状的3D电子封装锡层在硅衬底上形成晶须的过程,实现对晶须的定性分析和生长趋势推演;通过控制实验背景氩气体压力、热循环温度和循环周期等关键参数,构建外部因素和镀层薄膜中内压应力与晶须生长速度、长度和密度的加速试验系统;利用扫描电子显微镜观察和检测晶须生长速度和密度变化,并与仿真结果对比,验证压应力释放、原子扩散和DRX在3D电子封装锡晶须生长数学模型中的有效性,实现对晶须的定量描述,对减少未来3D封装微结构图形设计中的晶须问题提供建设性建议.

本文引用格式

王泽坤, 张福曦 . 3D电子封装锡晶须建模与实验验证[J]. 上海交通大学学报, 2021 , 55(11) : 1445 -1452 . DOI: 10.16183/j.cnki.jsjtu.2021.017

Abstract

The release of compressive stress and atom diffusion have important influences on the growth of whiskers in 3D electronic packaging, and the compressive stress is also one of the main factors for dynamic recrystallization (DRX). By using the mathematical model of growth mechanism and the behavior of tin whisker based on the finite element method, the process of forming whiskers on silicon substrate by 3D electronic packaging tin layer with a typical physical size and structure was simulated. The qualitative analysis and growth of whiskers were realized. By controlling the key parameters such as gas pressure, thermal cycling temperature, and cycle of Ar in the background of the experiment, the external factors and plating process were constructed. The experimental system of accelerated test of internal pressure stress and whisker growth speed, length, and density in the film was constructed. The growth rate and density of whiskers were observed and detected by SEM. The effectiveness of the mathematical model of stress release, atom diffusion, and DRX in 3D electronic packaging tin whiskers was verified by SEM. The quantitative description of whiskers was realized, providing constructive suggestions for reducing whisker problems in future 3D packaging microstructure graphic design.

参考文献

[1] HERRING C, GALT J K. Elastic and plastic properties of very small metal specimens[J]. Physical Review, 1952, 85(6):1060-1061.
[2] 何小健, 王劲, 程剑, 等. 碰击开关锡晶须与引信弹道炸[J]. 探测与控制学报, 2011, 33(2):1-4.
[2] HE Xiaojian, WANG Jin, CHENG Jian, et al. Tin whisker on impact switch and fuze ballistic explosion[J]. Journal of Detection & Control, 2011, 33(2):1-4.
[3] HAN S. Assessment of an electrical shorting and metal vapor arcing potential of tin whiskers[D]. Maryland, USA: University of Maryland, College Park: 2012.
[4] COUREY K J. An investigation of the electrical short circuit characteristics of tin whiskers[D]. Coral Gables, USA: University of Miami, 2008.
[5] LINDBORG U. A model for the spontaneous growth of zinc, cadmium and tin whiskers[J]. Acta Metallurgica, 1976, 24(2):181-186.
[6] HILLMAN D, WILCOXON R. Tin whisker risk assessment of a tin surface finished connector[J]. Surface Mount Technology, 2015, 30(2):68-79.
[7] 周颖. 基于硅通孔的三维电子封装热机械可靠性研究[D]. 武汉: 华中科技大学, 2016.
[7] ZHOU Ying. Research on reliability of through silicon via (TSV) in 3D integration[D]. Wuhan: Huazhong University of Science and Technology, 2016.
[8] AGLAN H A, PRAYAKARAO K R, RAHMAN M K, et al. Effect of environmental conditions on tin (Sn) whisker growth[J]. Engineering, 2015, 7(12):816-826.
[9] LIN S K, YORIKADO Y, JIANG J X, et al. Mechanical deformation-induced Sn whiskers growth on electroplated films in the advanced flexible electronic packaging[J]. Journal of Materials Research, 2007, 22(7):1975-1986.
[10] TU K N, HSIAO H Y, CHEN C. Transition from flip chip solder joint to 3D IC microbump: Its effect on microstructure anisotropy[J]. Microelectronics Reliability, 2013, 53(1):2-6.
[11] KATO T, AKAHOSHI H, NAKAMURA M, et al. Correlation between whisker initiation and compressive stress in electrodeposited tin-copper coating on copper leadframes[J]. IEEE Transactions on Electronics Packaging Manufacturing, 2010, 33(3):165-176.
[12] JIANG J X, LEE J E, KIM K S, et al. Oxidation behavior of Sn-Zn solders under high-temperature and high-humidity conditions[J]. Journal of Alloys and Compounds, 2008, 462(1/2):244-251.
[13] BAATED A, KIM K S, SUGANUMA K, et al. Effects of reflow atmosphere and flux on Sn whisker growth of Sn-Ag-Cu solders[J]. Journal of Materials Science: Materials in Electronics, 2010, 21(10):1066-1075.
[14] XU C, ZHANG Y, FAN C L, et al. Driving force for the formation of Sn whiskers: Compressive stress-pathways for its generation and remedies for its elimination and minimization[J]. IEEE Transactions on Electronics Packaging Manufacturing, 2005, 28(1):31-35.
[15] LAL S, MOYER T D. Role of intrinsic stresses in the phenomena of tin whiskers in electrical connectors[J]. IEEE Transactions on Electronics Packaging Manufacturing, 2005, 28(1):63-74.
[16] VIANCO P T, REJENT J A. Dynamic recrystallization (DRX) as the mechanism for Sn whisker development. Part I: A model[J]. Journal of Electronic Materials, 2009, 38(9):1815-1825.
[17] NIU C J, LEE H, CHEN S R, et al. High-energy lithium metal pouch cells with limited anode swelling and long stable cycles[J]. Nature Energy, 2019, 4(7):551-559.
[18] LIU Y S, LU C J, ZHANG P G, et al. Mechanisms behind the spontaneous growth of Tin whiskers on the Ti2SnC ceramics[J]. Acta Materialia, 2020, 185:433-440.
[19] CHEN W J, LEE Y L, WU T Y, et al. Effects of electrical current and external stress on the electromigration of intermetallic compounds between the flip-chip solder and copper substrate[J]. Journal of Electronic Materials, 2018, 47(1):35-48.
[20] HE Y, REN X, XU Y, et al. Origin of lithium whisker formation and growth under stress[J]. Nature Nanotechnology, 2019, 14(11):1042-1047.
[21] JUNG D H, SHARMA A, JUNG J P. A review of soft errors and the low α-solder bumping process in 3D packaging technology[J]. Journal of Materials Science, 2018, 53(1):47-65.
[22] MIZUGUCHI Y, MURAKAMI Y, TOMIYA S, et al. Effect of crystal orientation on mechanically induced Sn whiskers on Sn-Cu plating[J]. Journal of Electronic Materials, 2012, 41(7):1859-1867.
[23] VIANCO P T, NEILSEN M K, REJENT J A, et al. Validation of the dynamic recrystallization (DRX) mechanism for whisker and hillock growth on Sn thin films[J]. Journal of Electronic Materials, 2015, 44(10):4012-4034.
[24] CHO S, KO Y. Finite element analysis for reliability of solder joints materials in the embedded package[J]. Electronic Materials Letters, 2019, 15(3):287-296.
[25] BOZACK M J, SNIPES E K, FLOWERS G T. Influence of small weight percentages of Bi and systematic coefficient of thermal expansion variations on Sn whiskering[J]. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2017, 7(3):338-344.
文章导航

/