基于MSOP的蒸汽动力系统单参数运行稳定性评估方法

展开
  • 1.海军92118部队,浙江 舟山 316000
    2.海军工程大学 动力工程学院,武汉 430033
    3.海军工程大学 船舶与海洋学院,武汉 430033
郑奕扬(1996-),男,浙江省台州市人,硕士生,主要从事稳定性评估方法研究.

收稿日期: 2020-08-11

  网络出版日期: 2021-12-03

基金资助

国家自然科学基金资助项目(51909254)

An Operation Stability Assessment Method of a Single-Parameter in team Power System Based on MSOP

Expand
  • 1. No.92118 Troop of PLA Navy, Zhoushan 316000, Zhejiang, China
    2. College of Power ngineering, Naval University of Engineering, Wuhan 430033, China
    3. College of Naval rchitecture and Marine Engineering, Naval University of Engineering, Wuhan 430033, China

Received date: 2020-08-11

  Online published: 2021-12-03

摘要

针对当前蒸汽动力系统缺乏有效稳定性评估方法的问题,提出一种适用于单个运行参数的稳定性评估方法.该方法是一种复合评估方法,首先综合运用中值回归经验模态分解和奇异值分解,对运行参数的时间序列进行分解并提取其隐藏的趋势项,然后依据各分量的最佳算法参数排列熵选取分量进行重构,最后通过非平稳时间序列分析中常用的整合滑动平均自回归模型预测趋势项和扰动项的走势并提取两者的分布特征,进而计算得到运行参数在预测趋势上各点的失稳概率并由此对其稳定性进行定量评估.经实际案例验证,证明该方法能够有效评估蒸汽动力系统单参数的运行稳定性,具有一定的理论创新性和工程应用价值.

本文引用格式

郑奕扬, 倪何, 金家善 . 基于MSOP的蒸汽动力系统单参数运行稳定性评估方法[J]. 上海交通大学学报, 2021 , 55(11) : 1438 -1444 . DOI: 10.16183/j.cnki.jsjtu.2020.256

Abstract

Aimed at the lack of effective stability evaluation methods for the current steam power system, an operation stability assessment method suitable for single parameter is proposed. This method is a composite method, which first applied the midpoint and regression based empirical mode decomposition (MREMD) and singular value decomposition (SVD) to decompose the time series of operation parameters and extract their hidden trend terms. Then, the components are selected for reconstruction according to the optimal algorithm parameter permutation entropy (OAPPE) of each component. Finally, the auto-regressive integrated moving average (ARIMA ) model commonly used in the non-stationary time series analysis is utilized to predict the trend and the disturbance of parameters, and their distribution characteristics are also extracted in this process, based on which, the probability of instability (PI) of operation parameters at each point on the predicted trend are calculated, and their stabilities are quantitatively evaluated. The actual case proves that this method can effectively assess the operation stability of a single parameter of the steam power system, which has a certain theoretical innovation and engineering application value.

参考文献

[1] 唐韧博, 杨建东. 水泵水轮机不同工况点的稳定性分析[J]. 水力发电学报, 2016, 35(5):117-122.
[1] TANG Renbo, YANG Jiandong. Operation stability analysis of pump-turbine in different working conditions[J]. Journal of Hydroelectric Engineering, 2016, 35(5):117-122.
[2] LU S Z, WANG X H, YU H L, et al. Trend extraction and identification method of cement burning zone flame temperature based on EMD and least square[J]. Measurement, 2017, 111:208-215.
[3] CHEN Y Q, ZHENG W, WEI X B. Application of EMD to integrated signal trend extraction[J]. Advanced Materials Research, 2012, 591/592/593:2072-2076.
[4] DONG Y, SUN Y. Trend extraction by difference method for least square combining with EMD[J]. International Journal of Advancements in Computing Technology, 2012, 4(15):512-519.
[5] BHUIYAN S M A, CAREY S, KHAN J F. Analysis of signal trend by a pseudo-EMD method with applications to weather and speech data[J]. Advances in Adaptive Data Analysis, 2013, 5(2):1350009.
[6] BREAKER L C. Energy production trend extraction using ensemble empirical mode decomposition[J]. International Journal of Energy and Statistics, 2013, 1(3):195-204.
[7] 李精明, 魏海军, 魏立队, 等. 摩擦振动信号的EEMD和多重分形去趋势波动分析[J]. 哈尔滨工程大学学报, 2016, 37(9):1204-1208.
[7] LI Jingming, WEI Haijun, WEI Lidui, et al. Ensemble empirical mode decomposition and multifractal detrended fluctuation analysis of frictional vibration signals[J]. Journal of Harbin Engineering University, 2016, 37(9):1204-1208.
[8] 陈亮, 刘宏立, 郑倩, 等. 基于EEMD-SVD-PE的轨道波磨趋势项提取[J]. 哈尔滨工业大学学报, 2019, 51(5):171-177.
[8] CHEN Liang, LIU Hongli, ZHENG Qian, et al. An EEMD-SVD-PE approach to extract the trend of track irregularity[J]. Journal of Harbin Institute of Technology, 2019, 51(5):171-177.
[9] KIRBAŞ İ, SÖZEN A, TUNCER A D, et al. Comparative analysis and forecasting of COVID-19 cases in various European countries with ARIMA, NARNN and LSTM approaches[J]. Chaos, Solitons & Fractals, 2020, 138:110015.
[10] 黄礼敏. 海浪中非平稳非线性舰船运动在线预报研究[D]. 哈尔滨: 哈尔滨工程大学, 2016.
[10] HUANG Limin. On-line prediction of non-stationary and nonlinear ship motions at sea[D]. Harbin: Harbin Engineering University, 2016.
[11] UDDIN J, KIM J M, ISLAM R. Texture analysis based feature extraction using Gabor filter and SVD for reliable fault diagnosis of an induction motor[J]. International Journal of Information Technology and Management, 2018, 17(1/2):20.
[12] FRASER A M, SWINNEY H L. Independent coordinates for strange attractors from mutual information[J]. Physical Review A, General Physics, 1986, 33(2):1134-1140.
[13] KENNEL, BROWN, ABARBANEL. Determining embedding dimension for phase-space reconstruction using a geometrical construction[J]. Physical Review A, Atomic, Molecular, and Optical Physics, 1992, 45(6):3403-3411.
[14] VASSILVITSKII S, ARTHUR D. K-means++: The advantages of careful seeding[EB/OL]. [2020-04-11]. https://maheshgoyani.in/resource/workshop/kmeans++.pdf.
文章导航

/