大藤峡人字闸门智能监控微机电系统传感器

展开
  • 上海交通大学 电子信息与电气工程学院,上海 200240
谢子仪(1997-),女,江苏省无锡市人,硕士生,现主要从事MEMS技术制造方面的研究工作.

收稿日期: 2020-04-08

  网络出版日期: 2021-12-03

Intelligent Monitoring Micro-Electro-Mechanical-System Sensor of Herringbone Gate of Dateng Gorge

Expand
  • School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China

Received date: 2020-04-08

  Online published: 2021-12-03

摘要

底枢轴承作为重要水利结构的支撑与转动构件,其在转合操作中造成的磨损直接影响闸门的正常运作和可靠性.在恶劣的深水工作条件下,为了更好地监测轴承磨损量,利用微机电系统,设计一种新型的薄膜电阻型磨损量传感器;进行磨损量测量表征实验,并利用计算机仿真建模进行磨损量实验模拟;具体分析不同工况下的测量电阻与磨损参数之间的关系.结果表明:该传感器的制作和安装过程具有一定的可行性;实验与仿真结果基本吻合;在工况允许范围内,电阻越大,磨损量的测量精度越高.该传感器有望应用于大藤峡人字闸门底轴枢纽的智能监控,实现21世纪水利枢纽工程的物联网与智慧管理.

本文引用格式

谢子仪, 段力, 翁昊天 . 大藤峡人字闸门智能监控微机电系统传感器[J]. 上海交通大学学报, 2021 , 55(11) : 1401 -1407 . DOI: 10.16183/j.cnki.jsjtu.2020.102

Abstract

Bottom pivot bearing acts as the supporting and rotating component of the important water conservancy structure. The wear in the turning and closing operation is directly related to the normal operation and reliability of the gate. To directly monitor the wear of the bearing under severe deep water working conditions, a novel thin film resistive wear sensor was designed and constructed by using the micro-electro-mechanical-system (MEMS) micro-manufacturing technology. The wear measurement and characterization experiments were conducted. Besides, a wear test was simulated by computer simulation modeling. The relationship between the measured resistance and the wear parameters under different working conditions was specifically analyzed. The results show that the production and installation process of the sensor is feasible, and the experimental results are basically consistent with the simulation results. In the allowable range of working conditions, as the resistance increases, the accuracy of wear measurement increases. The sensor is expected to be applied in the intelligent monitoring of the herringbone gate of Dateng Gorge, and realize the Internet of things (IoT) and intelligent monitoring of the water conservancy projects in the 21st century.

参考文献

[1] 翁长溥. 红水河水电基地开发历程的回顾[J]. 红水河, 2001, 20(2):74-79.
[1] WENG Changpu. Review of the development process of the Red River hydropower base[J]. Red River, 2001, 20(2):74-79.
[2] 刘浩, 袁伟, 师小小, 等. 大藤峡船闸人字闸门疲劳分析[J]. 东北水利水电, 2018, 36(7):21-23.
[2] LIU Hao, YUAN Wei, SHI Xiaoxiao, et al. Fatigue analysis of the miter gate of Dateng Gorge shiplock[J]. Northeast Water Resources and Hydropower, 2018, 36(7):21-23.
[3] CANTER N. Writing a wear sensor into a machine[J]. Tribology & Lubrication Technology, 2018, 74(11):12-13.
[4] 袁园. 基于NB-IOT技术的智慧水利系统[J]. 电子技术与软件工程, 2019, 147(1):252.
[4] YUAN Yuan. Smart water conservancy system based on NB-IOT technology[J]. Electronic Technology & Software Engineering, 2019, 147(1):252.
[5] 杨帆. 一种基于光电位移传感器位移实时监测系统[J]. 中国科技信息, 2019, 602(7):81-82.
[5] YANG Fan. A photoelectric displacement sensor displacement-based real-time monitoring system[J]. China Science and Technology Information, 2019, 602(7):81-82.
[6] 俞伟. 物联网技术在水利信息化中的应用[J]. 计算机产品与流通, 2018(12):99.
[6] YU Wei. Application of internet of Things techno-logy in water conservancy informationization[J]. Computer Products and Circulation, 2018(12):99.
[7] DARDONA S, SCHMIDT W R, CULP S R. Me-thod for fabricating printed electronics: US 20160007473 A1[P]. 2016-07-01[2020-04-08].
[8] DARDONA S, SHEN A, TOKG Z. Direct write fabrication of a wear sensor[J]. IEEE Sensors Journal, 2018, 18(8):3461-3466.
[9] XIAO X, TANG B P, DENG L. High accuracy synchronous acquisition algorithm of multi-hop sensor networks for machine vibration monitoring[J]. Mea-surement, 2017, 102:10-19.
[10] BHUIYAN M S H, CHOUDHURY I A, DAHARI M, et al. Application of acoustic emission sensor to investigate the frequency of tool wear and plastic deformation in tool condition monitoring[J]. Measurement, 2016, 92:208-217.
[11] CHEN Y X, JIN Y, JIRI G. Predicting tool wear with multi-sensor data using deep belief networks[J]. The International Journal of Advanced Manufacturing Technology, 2018, 99(5/6/7/8):1917-1926.
[12] ZHU X L, DU L, ZHE J. A 3×3 wear debris sensor array for real time lubricant oil conditioning monitoring using synchronized sampling[J]. Mechanical Systems and Signal Processing, 2017, 83:296-304.
[13] 董光能, 景敏卿, 谢友柏, 等. 双位移传感器测磨损量[J]. 润滑与密封, 2000, 25(1):45-47.
[13] DONG Guangneng, JING Minqing, XIE Youbai, et al. Dual displacement sensors to measure wear[J]. Lubrication Engineering, 2000, 25(1):45-47.
[14] 华亮, 堵俊, 吴晓. 新型高精度一体反射型超声波传感器测距系统研制[J]. 仪表技术与传感器, 2008(4):80-83.
[14] HUA Liang, DU Jun, WU Xiao. Novel high precision controller design for integrative ultrasonic sensor[J]. Instrument Technique and Sensor, 2008(4):80-83.
[15] 董光能, 谢友柏, 虞烈. 磨损量的传感器测量[J]. 润滑与密封, 1998, 23(2):38-41.
[15] DONG Guangneng, XIE Youbai, YU Lie. Wear measurement by transducer[J]. Lubrication Engineering, 1998, 23(2):38-41.
[16] 卓兴建, 路亚缇. 刮刀及撕裂刀磨损实时监测系统[J]. 隧道建设, 2018, 38(6):1060-1065.
[16] ZHUO Xingjian, LU Yati. Real-time wear monitor-ing system for scrape cutters and tearing cutters[J]. Tunnel Construction, 2018, 38(6):1060-1065.
[17] 陈平, 刘胜平, 王德中. 环氧树脂及其应用[M]. 北京: 化学工业出版社, 2014.
[17] CHEN Ping, LIU Shengping, WANG Dezhong. Epoxy resin and its application[M]. Beijing: Chemical Industry Press, 2014.
文章导航

/