收稿日期: 2020-09-07
网络出版日期: 2021-12-03
基金资助
国家自然科学基金(11702311);国家数值风洞项目(NNW2018-ZT2B04);国家重点研发计划项目(2019YFA0405202)
Numerical Simulation of Influence of Adsorption on Surface Heterogeneous Catalysis Process of Hypersonic Vehicles
Received date: 2020-09-07
Online published: 2021-12-03
针对表面催化效应对高超声速飞行器气动热影响显著且难以准确预测的问题,采用理论分析和数值模拟相结合的方法,建立了含物理/化学吸附、Eley-Rideal(ER)和Langmuir-Hinshelwood(LH)复合的有限速率四步表面多相催化模型.基于该模型进行了高超声速圆柱绕流数值模拟,分析了物理和化学吸附位覆盖率对高焓空气流场表面催化反应速率和气动热的影响.结果表明:所发展的催化模型可有效提升气动热预测精准度;受各吸附、复合反应过程的交叉影响,表面覆盖率对气动热的影响是非线性的.所建模型基于真实的物理过程,能够反映材料催化属性的差异,可为高超声速飞行器热防护系统的轻量化、低冗余设计提供理论支撑.
李芹, 杨肖峰, 董威, 杜雁霞 . 高超声速飞行器表面吸附特性对多相催化过程影响的数值模拟[J]. 上海交通大学学报, 2021 , 55(11) : 1352 -1361 . DOI: 10.16183/j.cnki.jsjtu.2020.288
In view of the issue that surface catalysis has a significant influence on aerodynamic heating of hypersonic vehicle heatshield and is difficult to accurately predict, a four-step surface heterogeneous catalytic model including physisorption, chemisorption, Eley-Rideal (ER) recombination, and Langmuir-Hinshelwood (LH) recombination was established by combining theoretical analysis and numerical simulation. Based on the model, the nonequilibrium flow and the aerodynamic heat around a two-dimensional cylinder were simulated. The influence of the fraction of occupied physisorption and chemisorption sites on the catalysis rate and the aerodynamic heat was analyzed. The results show that the established model can improve the prediction accuracy of the aerodynamic heat. The surface adsorption has a nonlinear influence on the aerodynamic heat due to the competing and promoting between different reaction pathways. Based on the real physicochemical process, the model can reflect the catalytic properties of different materials and further provides theoretical support for the lightweight and low redundancy design of the thermal protection system.
[1] | BARBATO M, REGGIANI S, BRUNO C, et al. Model for heterogeneous catalysis on metal surfaces with applications to hypersonic flows[J]. Journal of Thermophysics and Heat Transfer, 2000, 14(3):412-420. |
[2] | 金华. 防热材料表面催化特性测试与评价方法研究[D]. 哈尔滨: 哈尔滨工业大学, 2014. |
[2] | JIN Hua. Surface catalyticity properties testing and characterization methods of thermal protection materials[D]. Harbin: Harbin Institute of Technology, 2014. |
[3] | 董维中, 乐嘉陵, 刘伟雄. 驻点壁面催化速率常数确定的研究[J]. 流体力学实验与测量, 2000, 14(3):1-6. |
[3] | DONG Weizhong, LE Jialing, LIU Weixiong. The determination of catalytic rate constant of surface materials of testing model in the shock tube[J]. Experiments and Measurements in Fluid Mechanics, 2000, 14(3):1-6. |
[4] | 桂业伟. 高超声速飞行器综合热效应问题[J]. 中国科学: 物理学力学天文学, 2019, 49(11):139-153. |
[4] | GUI Yewei. Combined thermal phenomena of hypersonic vehicle[J]. SCIENTIA SINICA Physica, Mechanica & Astronomica, 2019, 49(11):139-153. |
[5] | 桂业伟, 刘磊, 魏东. 长航时高超声速飞行器的综合热效应问题[J]. 空气动力学学报, 2020, 38(4):641-650. |
[5] | GUI Yewei, LIU Lei, WEI Dong. Combined thermal phenomena issues of long endurance hypersonic vehicles[J]. Acta Aeronautica et Astronautica Sinica, 2020, 38(4):641-650. |
[6] | ARMENISE I, BARBATO M, CAPITELLI M, et al. Surface recombination coefficients and boundary-layer hypersonic-flow calculations on different surfaces[J]. Journal of Spacecraft and Rockets, 2004, 41(2):310-313. |
[7] | ARMENISE I, BARBATO M, CAPITELLI M, et al. State-to-state catalytic models, kinetics, and transport in hypersonic boundary layers[J]. Journal of Thermophysics and Heat Transfer, 2006, 20(3):465-476. |
[8] | YANG X F, GUI Y W, TANG W, et al. Surface thermochemical effects on TPS-coupled aerothermodynamics in hypersonic Martian gas flow[J]. Acta Astronautica, 2018, 147:445-453. |
[9] | YANG X F, GUI Y W, TANG W, et al. Surface chemical effects on hypersonic nonequilibrium aeroheating in dissociated carbon-oxygen mixture[J]. Journal of Spacecraft and Rockets, 2018, 55(3):687-697. |
[10] | YANG X F, GUI Y W, XIAO G M, et al. Reacting gas-surface interaction and heat transfer characteristics for high-enthalpy and hypersonic dissociated carbon dioxide flow[J]. International Journal of Heat and Mass Transfer, 2020, 146:118869. |
[11] | MARSCHALL J, MACLEAN M. Finite-rate surface chemistry model, I: Formulation and reaction system examples[C]// 42nd AIAA Thermophysics Conference. Reston, Virigina, USA: AIAA, 2011: 3783. |
[12] | KUROTAKI T. Construction of catalytic model on SiO2-based surface and application to real trajectory[C]// 34th Thermophysics Conference. Reston, Virigina, USA: AIAA, 2000: 2366. |
[13] | MILOS F S, RASKY D J. Review of numerical procedures for computational surface thermochemistry[J]. Journal of Thermophysics and Heat Transfer, 1994, 8(1):24-34. |
[14] | NORMAN P, SCHWARTZENTRUBER T, COZMUTA I. A computational chemistry methodology for developing an oxygen-silica finite rate catalytic model for hypersonic flows[C]// 42nd AIAA Thermophysics Conference. Reston, Virigina, USA: AIAA, 2011: 3644. |
[15] | NORMAN P, SCHWARTZENTRUBER T. A computational chemistry methodology for developing an oxygen-silica finite rate catalytic model for hypersonic flows: Part II[C]// 43rd AIAA Thermophysics Conference. Reston, Virigina, USA: AIAA, 2012: 3097. |
[16] | LI K, LIU J, LIU W Q. A new surface catalytic model for silica-based thermal protection material for hypersonic vehicles[J]. Chinese Journal of Aeronautics, 2015, 28(5):1355-1361. |
[17] | 桂业伟, 刘磊, 代光月, 等. 高超声速飞行器流-热-固耦合研究现状与软件开发[J]. 航空学报, 2017, 38(7):87-105. |
[17] | GUI Yewei, LIU Lei, DAI Guangyue, et al. Research status of hypersonic vehicle fluid-thermal-solid coupling and software development[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(7):87-105. |
[18] | KARL S, SCHRAMM J M, HANNEMANN K. High enthalpy cylinder flow in HEG: A basis for CFD validation[C]// Aiaa Fluid Dynamics Conference. Orlando, Florida, USA: AIAA, 2003: 4252. |
[19] | MACLEAN M, MARINEAU E, PARKER R, et al. Effect of surface catalysis on measured heat transfer in an expansion tunnel facility[J]. Journal of Spacecraft and Rockets, 2013, 50(2):470-474. |
/
〈 |
|
〉 |