收稿日期: 2019-06-18
网络出版日期: 2021-11-01
基金资助
国家高技术研究发展计划(2013AA041106);国家自然科学基金(31300783);中国博士后科学基金(2014M561458)
Online Degradation Assessment of Shore Bridge Hoisting Gearbox Based on Improved Symbolic Sequence Entropy and Logistic Regression Model
Received date: 2019-06-18
Online published: 2021-11-01
针对岸桥起升减速箱的退化状态评估问题,提出一种基于在线改进符号序列熵(O_ISSE)与逻辑回归的退化状态在线评估方法.首先引入阈值因子,保留信号变化方向与幅值的“粗粒化”信息,降低原算法对于冲击成分的“敏感性”,提出改进后的符号序列熵(ISSE).采用滑动窗Weibull拟合的方法有效滤除ISSE特征序列中的波动影响,形成O_ISSE.最后,训练并建立逻辑回归模型,在线计算得到未知样本的健康因子H值,实现未知样本的状态识别.采用上港某码头在线监测的起升机构减速箱全寿命数据进行实例分析.研究结果表明,所提ISSE和逻辑回归模型方法能够挖掘信号中的复杂度变化规律,准确地跟踪并识别性能退化状态.
王微, 王冰, 胡雄, 孙德建 . 基于在线改进符号序列熵与逻辑回归模型的岸桥起升减速箱在线退化评估[J]. 上海交通大学学报, 2021 , 55(10) : 1272 -1280 . DOI: 10.16183/j.cnki.jsjtu.2019.169
Aimed at the problem of degradation assessment of shore bridge hoisting gearbox, an online evaluation method of degradation state based on improved symbol sequence entropy (O_ISSE) and logistic regression is proposed. First, a threshold factor is introduced to retain the “coarse-grained” information of the signal change direction and amplitude, reduce the “sensitivity” of original algorithm to the impact component, and propose an improved symbol sequence entropy (ISSE).Then, the sliding window Weibull fitting method is used to effectively filter out the influence of fluctuations in the ISSE characteristic sequence to form O_ISSE. Finally, a logistic regression model is trained and established, and the H value of health factor of the unknown sample are calculated to realize its status recognition online.The example analysis of the life data of the hoisting gearbox of a dock in Shanghai is conducted. The results show that the ISSE and logistic regression model can describe the complexity of signal, track and identify performance degradation status accurately.
[1] | STARYKOV M, HOORN F V. The influence of a quay crane sea transportation on its further exploitation[J]. Transport, 2017, 33(2):536-542. |
[2] | LIU C, ZHANG H Z, XIE Z C, et al. Combined forecasting method of dissolved gases concentration and its application in condition-based maintenance[J]. IEEE Transactions on Power Delivery, 2019, 34(4):1269-1279. |
[3] | 张龙, 黄文艺, 熊国良, 等. 基于多域特征与高斯混合模型的滚动轴承性能退化评估[J]. 中国机械工程, 2014, 25(22):3066-3072. |
[3] | ZHANG Long, HUANG Wenyi, XIONG Guoliang, et al. Assessment of rolling bearing performance degradation using gauss mixture model and multi-domain features[J]. China Mechanical Engineering, 2014, 25(22):3066-3072. |
[4] | HONG S, ZHOU Z, ZIO E, et al. Condition assessment for the performance degradation of bearing based on a combinatorial feature extraction method[J]. Digital Signal Processing, 2014, 27:159-166. |
[5] | WU J, WU C Y, CAO S, et al. Degradation data-driven time-to-failure prognostics approach for rolling element bearings in electrical machines[J]. IEEE Transactions on Industrial Electronics, 2019, 66(1):529-539. |
[6] | 倪祥龙, 赵建民, 陈吉潮, 等. 行星变速箱退化特征参数提取方法[J]. 振动测试与诊断, 2019, 39(2):359-368. |
[6] | NI Xianglong, ZHAO Jianmin, CHEN Jichao, et al. Method of planetary gearbox degradation feature extraction[J]. Journal of Vibration, Measurement & Diagnosis, 2019, 39(2):359-368. |
[7] | ARANEO R, ATTOLINI G, CELOZZI S, et al. Time-domain shielding performance of enclosures: A comparison of different global approaches[J]. IEEE Transactions on Electromagnetic Compatibility, 2016, 58(2):434-441. |
[8] | RANDALL R B, ANTONI J. Rolling element bearing diagnostics—A tutorial[J]. Mechanical Systems and Signal Processing, 2011, 25(2):485-520. |
[9] | 程道来, 贾玉琛, 潘玉娜. 基于S时频熵的球轴承性能退化特征指标提取方法[J]. 轴承, 2019(4):59-62. |
[9] | CHENG Daolai, JIA Yuchen, PAN Yuna. Extraction method for performance degradation characteristic indexes of ball bearings based on S-time-frequency entropy[J]. Bearing, 2019(4):59-62. |
[10] | 王志霞, 郭利. 基于熵特征与HMM的滚动轴承退化状态识别[J]. 组合机床与自动化加工技术, 2018(7):64-68. |
[10] | WANG Zhixia, GUO Li. Degradation state recognition of rolling bearing based on entropy and HMM[J]. Modular Machine Tool & Automatic Manufacturing Technique, 2018(7):64-68. |
[11] | 李凌均, 金兵, 马艳丽, 等. 基于MEMD与MMSE的滚动轴承退化特征提取方法[J]. 郑州大学学报(工学版), 2018, 39(4):86-91. |
[11] | LI Lingjun, JIN Bing, MA Yanli, et al. The method of degradation feature extraction of rolling bearing based on MEMD and multivariate multiscale entropy[J]. Journal of Zhengzhou University (Engineering Science), 2018, 39(4):86-91. |
[12] | GAO Y D, VILLECCO F, LI M, et al. Multi-scale permutation entropy based on improved LMD and HMM for rolling bearing diagnosis[J]. Entropy, 2017, 19(4):176. |
[13] | 辛怡, 赵一璋, 母远慧. 基于Poincaré散点图和符号动力学的心电分析方法[J]. 北京理工大学学报, 2017, 37(10):1084-1089. |
[13] | XIN Yi, ZHAO Yizhang, MU Yuanhui. ECG feature analysis based on Poincaré plot and symbolic dynamics[J]. Transactions of Beijing Institute of Technology, 2017, 37(10):1084-1089. |
[14] | 李红利, 王江, 邓斌, 等. 癫痫脑电的互信息和同步性分析[J]. 计算机工程与应用, 2013, 49(6):19-22. |
[14] | LI Hongli, WANG Jiang, DENG Bin, et al. Analysis of mutual information and synchronism for epileptic EEG signals[J]. Computer Engineering and Applications, 2013, 49(6):19-22. |
[15] | 杜飞, 王世通, 戴加飞, 等. 少年与中年脑电信号的多尺度符号序列熵分析[J]. 北京生物医学工程, 2016, 35(6):599-603. |
[15] | DU Fei, WANG Shitong, DAI Jiafei, et al. Multiscale sign series entropy analysis based on the young and middle-aged electroencephalogram[J]. Beijing Biomedical Engineering, 2016, 35(6):599-603. |
[16] | 卞春华, 马千里, 司峻峰, 等. 短时心率变异符号序列的熵分析方法[J]. 科学通报, 2009, 54(3):340-344. |
[16] | BIAN Chunhua, MA Qianli, SI Junfeng, et al. Entropy analysis method for short-term heart rate variability symbol sequences[J]. Chinese Science Bulletin, 2009, 54(3):340-344. |
[17] | 周建民, 黎慧, 张龙, 等. 基于EMD和逻辑回归的轴承性能退化评估[J]. 机械设计与研究, 2016, 32(5):72-75. |
[17] | ZHOU Jianmin, LI Hui, ZHANG Long, et al. Bearing performance degradation assessment based on EMD and logistic regression[J]. Machine Design & Research, 2016, 32(5):72-75. |
[18] | 潘峥嵘, 谯自健, 张宁. 基于符号序列熵的自适应随机共振的微弱信号检测[J]. 计量学报, 2015(5):496-500. |
[18] | PAN Zhengrong, QIAO Zijian, ZHANG Ning. Weak signal detection of adaptive stochastic resonance based on Shannon entropy of symbolic series[J]. Acta Metrologica Sinica, 2015(5):496-500. |
[19] | RAGHAVAN N. Failure of Weibull distribution to represent switching statistics in OxRAM[J]. Microelectronic Engineering, 2017, 178:230-234. |
[20] | 唐刚, 李建霞, 胡雄. 准确近似聚类算法及其在岸桥拉杆状态监测中的应用[J]. 东华大学学报(自然科学版), 2018, 44(4):590-594. |
[20] | TANG Gang, LI Jianxia, HU Xiong. Accurate approximate clustering algorithm and its application in the state monitoring of crane[J]. Journal of Donghua University (Natural Science), 2018, 44(4):590-594. |
/
〈 |
|
〉 |