面向滚动轴承全生命周期故障诊断的GA-OIHF Elman神经网络算法

展开
  • 机械与动力工程学院,上海 200240
卓鹏程(1994-),男,硕士生,安徽省宿州市人,主要研究方向为基于数据驱动的设备健康管理.

收稿日期: 2020-06-01

  网络出版日期: 2021-11-01

基金资助

国家自然科学基金资助项目(51875359);教育部-中国移动科研基金研发项目(CMHQ-JS-201900003);临港地区智能制造专项(ZN2017020101)

GA-OIHF Elman Neural Network Algorithm for Fault Diagnosis of Full Life Cycle of Rolling Bearing

Expand
  • School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China

Received date: 2020-06-01

  Online published: 2021-11-01

摘要

针对高背景噪声下滚动轴承全生命周期(轻度退化、中度退化、重度退化)故障诊断需求,提出GA-OIHF (Genetic Algorithm-Output Input Hidden Feedback) Elman神经网络模型,实现退化故障的精准诊断.利用集合经验模态分解对振动信号进行有效降噪与故障特征提取.设计OIHF Elman神经网络,并在Elman神经网络结构的基础上,同时增加输出层对隐含层与输入层的反馈,进一步提高其对滚动轴承全生命周期数据的处理能力.然后,通过结合遗传算法构建一种新的GA-OIHF Elman神经网络模型,该模型综合了遗传算法的全局寻优与OIHF Elman神经网络的局部寻优能力,从而实现对滚动轴承全生命周期的精确故障诊断.实验结果表明,所提出的GA-OIHF Elman方法不仅对于滚动轴承全生命周期故障具有准确的诊断效果,而且保证了诊断模型对于不同故障(不同故障部件与不同故障时期)的诊断稳定性.

本文引用格式

卓鹏程, 严瑾, 郑美妹, 夏唐斌, 奚立峰 . 面向滚动轴承全生命周期故障诊断的GA-OIHF Elman神经网络算法[J]. 上海交通大学学报, 2021 , 55(10) : 1255 -1262 . DOI: 10.16183/j.cnki.jsjtu.2020.157

Abstract

For the fault diagnosis needs of the full life cycle (light degradation, moderate degradation, and severe degradation) of rolling bearing under the environment of high background noise, a genetic algorithm-output input hidden feedback (GA-OIHF ) Elman neural network model is proposed to achieve precise diagnosis of the degradation faults of rolling bearing. Ensemble empirical mode decomposition (EEMD) is selected to effectively reduce the noise and extract fault features of the vibration signal. An OIHF Elman neural network is designed by increasing the feedbacks from the output layer to the hidden layer and the input layer based on the Elman neural network, thus further improves its ability to process full life cycle data of rolling bearing. Then, a novel GA-OIHF Elman neural network model is developed by combining the genetic algorithm (GA) and the OIHF Elman neural network. The novel GA-OIHF Elman neural network model combines the global optimization of GA and the local optimization ability of the OIHF Elman neural network to achieve an accurate fault diagnosis of the entire life cycle of rolling bearing. The experimental results show that the GA-OIHF Elman algorithm model can not only accurately diagnose the fault in the full life cycle of rolling bearing, but also ensure the stability of the diagnosis model for different faults including different fault components and stages.

参考文献

[1] HUANG W T, SUN H J, LUO J N, et al. Periodic feature oriented adapted dictionary free OMP for rolling element bearing incipient fault diagnosis[J]. Mechanical Systems and Signal Processing, 2019, 126:137-160.
[2] XIA T B, DONG Y F, XIAO L, et al. Recent advances in prognostics and health management for advanced manufacturing paradigms[J]. Reliability Engineering & System Safety, 2018, 178:255-268.
[3] XIA T B, SONG Y, ZHENG Y, et al. An ensemble framework based on convolutional bi-directional LSTM with multiple time windows for remaining useful life estimation[J]. Computers in Industry, 2020, 115:103182.
[4] SAARI J, STRÖMBERGSSON D, LUNDBERG J, et al. Detection and identification of windmill bearing faults using a one-class support vector machine (SVM)[J]. Measurement, 2019, 137:287-301.
[5] 陈玉昇, 杨燕华, 林萌, 等. 基于深度学习神经网络的核电厂故障诊断技术[J]. 上海交通大学学报, 2018, 52(Sup.1):58-61.
[5] CHEN Yusheng, YANG Yanhua, LIN Meng, et al. Fault diagnosis technology of nuclear power plant based on deep learning neural network[J]. Journal of Shanghai Jiao Tong University, 2018, 52(Sup.1):58-61.
[6] BEN ALI J, FNAIECH N, SAIDI L, et al. Application of empirical mode decomposition and artificial neural network for automatic bearing fault diagnosis based on vibration signals[J]. Applied Acoustics, 2015, 89:16-27.
[7] LI L, HUANG Y X, TAO J F, et al. Featured temporal segmentation method and AdaBoost-BP detector for internal leakage evaluation of a hydraulic cylinder[J]. Measurement, 2018, 130:279-289.
[8] 汤宝平, 习建民, 李锋. 基于Elman神经网络的旋转机械故障诊断[J]. 计算机集成制造系统, 2010, 16(10):2148-2152.
[8] TANG Baoping, XI Jianmin, LI Feng. Fault diagnosis for rotating machinery based on Elman neural network[J]. Computer Integrated Manufacturing Systems, 2010, 16(10):2148-2152.
[9] SHI X H, LIANG Y C, LEE H P, et al. Improved Elman networks and applications for controlling ultrasonic motors[J]. Applied Artificial Intelligence, 2004, 18(7):603-629.
[10] ZHENG K, YANG D W, ZHANG B, et al. A group sparse representation method in frequency domain with adaptive parameters optimization of detecting incipient rolling bearing fault[J]. Journal of Sound and Vibration, 2019, 462:114931.
[11] LEI Y G, QIAO Z J, XU X F, et al. An underdamped stochastic resonance method with stable-state matching for incipient fault diagnosis of rolling element bearings[J]. Mechanical Systems and Signal Processing, 2017, 94:148-164.
[12] LI H, LIU T, WU X, et al. Application of EEMD and improved frequency band entropy in bearing fault feature extraction[J]. ISA Transactions, 2019, 88:170-185.
[13] HUANG N E, SHEN Z, LONG S R, et al. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis[J]. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 1998, 454(1971):903-995.
[14] WANG Z W, ZHANG Q H, XIONG J B, et al. Fault diagnosis of a rolling bearing using wavelet packet denoising and random forests[J]. IEEE Sensors Journal, 2017, 17(17):5581-5588.
[15] AMIRAT Y, BENBOUZID M E H, WANG T, et al. EEMD-based notch filter for induction machine bearing faults detection[J]. Applied Acoustics, 2018, 133:202-209.
[16] 刘涛, 杜世昌, 黄德林, 等. 基于改进的集合经验模态方法振动信号分解[J]. 上海交通大学学报, 2016, 50(9):1452-1459.
[16] LIU Tao, DU Shichang, HUANG Delin, et al. Vibration signal decomposition based on an improved ensemble empirical mode decomposition method[J]. Journal of Shanghai Jiao Tong University, 2016, 50(9):1452-1459.
[17] FU Q, JING B, HE P J, et al. Fault feature selection and diagnosis of rolling bearings based on EEMD and optimized Elman_AdaBoost algorithm[J]. IEEE Sensors Journal, 2018, 18(12):5024-5034.
[18] GUO H X, LI Y J, LI Y N, et al. BPSO-Adaboost-KNN ensemble learning algorithm for multi-class imbalanced data classification[J]. Engineering Applications of Artificial Intelligence, 2016, 49:176-193.
[19] LIU H, TIAN H Q, LIANG X F, et al. New wind speed forecasting approaches using fast ensemble empirical model decomposition, genetic algorithm, Mind Evolutionary Algorithm and Artificial Neural Networks[J]. Renewable Energy, 2015, 83:1066-1075.
文章导航

/