基于改进模糊逻辑控制的并联式船舶动力系统能量管理

展开
  • 上海交通大学 机械与动力工程学院,上海 200240
王瑞昌(1994-),男,河北省邢台市人,硕士生, 主要研究方向为产品研发体系设计.

收稿日期: 2020-02-16

  网络出版日期: 2021-11-01

基金资助

国家自然科学基金重点项目(51278299)

Energy Management of Parallel Ship Power System Based on Improved Fuzzy Logic Control

Expand
  • School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China

Received date: 2020-02-16

  Online published: 2021-11-01

摘要

为缓解船舶运输带来的环境污染,针对以柴油机为主要推进装置的并联式混合动力系统,提出了基于改进模糊逻辑控制的并联式船舶动力系统能量管理策略.在模糊逻辑控制策略的基础上,以需求功率与实际输出总功率的差值作为修正项,将该修正项与实际需求功率之和作为模糊逻辑控制的输入,通过更改激发的模糊规则,对柴油机输出功率和电池组的输出功率进行重新分配,使得输出总功率与实际需求功率的误差减小.这种方法可以对不同的航行工况简便快捷地做出能量管理决策,为大功率船舶动力系统的能量管理提供新的解决方案.

本文引用格式

王瑞昌, 陈志华, 明新国 . 基于改进模糊逻辑控制的并联式船舶动力系统能量管理[J]. 上海交通大学学报, 2021 , 55(10) : 1188 -1196 . DOI: 10.16183/j.cnki.jsjtu.2020.043

Abstract

In order to alleviate the environmental pollution caused by ship transportation, an energy management strategy of parallel ship power system based on improved fuzzy logic control is proposed for the parallel hybrid power system with diesel engines as the main propulsion device. Based on the fuzzy logic control strategy, the error between required power and output power is used as a modification item and the sum of modification item, and demand power is taken as the input of the fuzzy logic control. By changing the fuzzy rules of excitation, the output power of the diesel engine and the output power of the battery pack are redistributed, so that the error between the total output power and the actual demand power is reduced. Energy management decisions can be made easily and quickly under different conditions by using this method which provides a new solution for energy management of high-power ship power systems.

参考文献

[1] SCHINAS O, STEFANAKOS C N. Cost assessment of environmental regulation and options for marine operators[J]. Transportation Research Part C: Emerging Technologies, 2012, 25:81-99.
[2] ZHU J Y, CHEN L, XIA L J, et al. Bi-objective optimal design of plug-in hybrid electric propulsion system for ships[J]. Energy, 2019, 177:247-261.
[3] 张益敏, 陈俐, 朱剑昀. 混合动力船舶动力装置及能量管理研究综述[J]. 舰船科学技术, 2018, 40(5):1-7.
[3] ZHANG Yimin, CHEN Li, ZHU Jianyun. Overview of power plant and energy management of hybrid ship[J]. Ship Science and Technology, 2018, 40(5):1-7.
[4] 吕学勤, 马玉超, 刘文明. 机器人燃料电池混合动力系统优化控制[J]. 上海交通大学学报, 2016, 50(12):1936-1939.
[4] LÜ Xueqin, MA Yuchao, LIU Wenming. Optimization of robot fuel cell hybrid power system[J]. Journal of Shanghai Jiao Tong University, 2016, 50(12):1936-1939.
[5] 谢海明, 黄勇, 王静, 等. 插电式混合动力汽车能量管理策略综述[J]. 重庆理工大学学报(自然科学), 2015, 29(7):1-9.
[5] XIE Haiming, HUANG Yong, WANG Jing, et al. Review of energy management strategies for plug-in HEVs[J]. Journal of Chongqing University of Technology (Natural Science), 2015, 29(7):1-9.
[6] OVRUM E, BERGH T F. Modelling lithium-ion battery hybrid ship crane operation[J]. Applied Energy, 2015, 152:162-172.
[7] LI S G, SHARKH S M, WALSH F C, et al. Energy and battery management of a plug-in series hybrid electric vehicle using fuzzy logic[J]. IEEE Transactions on Vehicular Technology, 2011, 60(8):3571-3585.
[8] HOU J, SUN J, HOFMANN H. Mitigating power fluctuations in electrical ship propulsion using model predictive control with hybrid energy storage system[C]// 2014 American Control Conference. Piscataway, NJ, USA: IEEE, 2014: 4366-4371.
[9] HOU J, SUN J, HOFMANN H. Interaction analysis and integrated control of hybrid energy storage and generator control system for electric ship propulsion[C]// 2015 American Control Conference (ACC). Piscataway, NJ, USA: IEEE, 2015: 4988-4993.
[10] ZHU L S, HAN J G, PENG D K, et al. Fuzzy logic based energy management strategy for a fuel cell/battery/ultra-capacitor hybrid ship[C]// 2014 First International Conference on Green Energy ICGE 2014. Piscataway, NJ, USA: IEEE, 2014: 107-112.
[11] STONE P, OPILA D F, PARK H, et al. Shipboard power management using constrained nonlinear model predictive control[C]// 2015 IEEE Electric Ship Technologies Symposium (ESTS). Piscataway, NJ, USA: IEEE, 2015: 1-7.
[12] HASELTALAB A, NEGENBORN R R. Model predictive maneuvering control and energy management for all-electric autonomous ships[J]. Applied Energy, 2019, 251:113308.
[13] 芮世民, 朱继懋, 黄根余. 应用自适应模糊控制实施船舶动力定位[J]. 上海交通大学学报, 2000, 34(1):56-59.
[13] RUI Shimin, ZHU Jimao, HUANG Genyu. Adaptive fuzzy control for ship dynamic positioning system[J]. Journal of Shanghai Jiao Tong University, 2000, 34(1):56-59.
文章导航

/