疏浚泵内泥沙颗粒的瞬态追踪数值方法
收稿日期: 2020-12-23
网络出版日期: 2021-09-22
基金资助
交通运输部2018年度交通运输行业重点科技项目(2018-MS1-026)
A Numerical Method for Transient Tracking of Sediment Particles in Dredge Pump
Received date: 2020-12-23
Online published: 2021-09-22
为求解疏浚泵内沙粒的瞬态运动,以ANSYS Fluent的离散相模型为基础实现了一种修正算法.在稠密流动中以Lagrangian方法追踪沙粒时,引入用欧拉方法描述的粒-液两相求解得到的粒相体积分数以及Huilin-Gidaspow曳力模型,将先更新叶轮网格再求解沙粒运动的过程转变为叶轮网格与颗粒同步旋转后再求解颗粒相对运动的过程,以避免粒子在运动壁面上碰撞判定及反弹速度计算的错误.对比数值结果发现,改进算法能够在相近的计算时间下显著提高泵内颗粒运动的追踪精度.改进算法预测叶轮上的冲蚀磨损主要发生在叶片前缘偏上部位,冲蚀率峰值达7×10-5 kg/(m2∙s)以上,这与真实磨损的位置和程度相近,验证了修正算法的有效性.
郭涛, 刘明明, 曹蕾, 胡京招, 洪国军, 尤云祥 . 疏浚泵内泥沙颗粒的瞬态追踪数值方法[J]. 上海交通大学学报, 2022 , 56(5) : 656 -663 . DOI: 10.16183/j.cnki.jsjtu.2020.437
In order to transiently solve the transient movement of sediment particles in dredge pumps, a modified algorithm is realized based on the discrete phase model in ANSYS Fluent. The granular phase volume fraction solved by using the Eulerian (granular)-Eulerian (liquid) two phases flow method and the Huilin-Gidaspow drag force laws are introduced for tracking particles with the Lagrangian method in dense flow. The solution process that solves particle motion after updating the impeller grid is changed to a process that solves particle relative motion after rotating synchronously the impeller grid with the particles. Under the situations of moving wall, the modified algorithm avoids the calculation error on collision identification and rebounded velocity of the particles. A comparison of numerical results shows that the modified algorithm can significantly improve the accuracy of particle motions in the dredge pump with similar time cost. The erosive wear predicted by the modified algorithm mainly appears on the front edges of the blades and the peak of erosion rate is about 7×10-5 kg/(m2∙s), which is similar to the actual situations, supporting the effectiveness of the modified algorithm.
Key words: discrete phase model; trajectories tracking; two phases flow; dredge pump
[1] | ANSYS INC. ANSYS Fluent 2020 R2 theory guide[EB/OL].(2020-07-15)[2020-10-20]. https://ansyshelp.ansys.com/account/secured?returnurl=/Views/Secured/corp/v202/en/flu_th/flu_th_chp_discrete.html. |
[2] | 吴波. 渣浆泵固液两相三维湍流及冲蚀磨损特性研究[D]. 长沙: 中南大学, 2010. |
[2] | WU Bo. Research on solid-liquid two-phase three-dimensional turbulence and erosion characteristics of slurry pump[D]. Changsha: Central South University, 2010. |
[3] | PAGALTHIVARTHI K V, GUPTA P K, TYAGI V, et al. CFD prediction of erosion wear in centrifugal slurry pumps for dilute slurry flows[J]. The Journal of Computational Multiphase Flows, 2011, 3(4): 225-245. |
[4] | 李亚林, 袁寿其, 汤跃, 等. 离心泵内示踪粒子运动的离散相模型模拟[J]. 农业机械学报, 2012, 43(11): 113-118. |
[4] | LI Yalin, YUAN Shouqi, TANG Yue, et al. Simulation of tracer particles movement by discrete phase model in the centrifugal pump[J]. Transactions of the Chinese Society for Agricultural Machinery, 2012, 43(11): 113-118. |
[5] | PENG G J, WANG Z W, XIAO Y X, et al. Abrasion predictions for Francis turbines based on liquid-solid two-phase fluid simulations[J]. Engineering Failure Analysis, 2013, 33: 327-335. |
[6] | 邹伟生, 卢勇, 李哲奂. 深海采矿提升泵的数值模拟分析[J]. 湖南大学学报(自然科学版), 2013, 40(6): 59-63. |
[6] | ZOU Weisheng, LU Yong, LI Zhehuan. Numerical simulation and analyses of lift pump in deep sea mining[J]. Journal of Hunan University (Natural Sciences), 2013, 40(6): 59-63. |
[7] | ZHU H W, ZHU J J, RUTTER R, et al. Sand erosion model prediction, selection and comparison for electrical submersible pump (ESP) using CFD method[C]// Proceedings of ASME 2018 5th Joint US-European Fluids Engineering Division Summer Meeting. Montreal, Montreal, Canada: ASME, 2018. |
[8] | SHEN Z J, CHU W L, LI X J, et al. Sediment erosion in the impeller of a double-suction centrifugal pump-A case study of the Jingtai Yellow River Irrigation Project, China[J]. Wear, 2019, 422/423: 269-279. |
[9] | CHEN X L, ZHONG W Q, SUN B B, et al. Study on gas/solid flow in an obstructed pulmonary airway with transient flow based on CFD-DPM approach[J]. Powder Technology, 2012, 217: 252-260. |
[10] | ADAMCZYK W P, KLIMANEK A, BIAŁECKI R A, et al. Comparison of the standard Euler-Euler and hybrid Euler-Lagrange approaches for modeling particle transport in a pilot-scale circulating fluidized bed[J]. Particuology, 2014, 15: 129-137. |
[11] | CHEN W, REN Y, ZHANG L F, et al. Numerical simulation of steel and argon gas two-phase flow in continuous casting using LES+VOF+DPM model[J]. JOM, 2019, 71(3): 1158-1168. |
[12] | HUANG S, SU X H, QIU G Q. Transient numerical simulation for solid-liquid flow in a centrifugal pump by DEM-CFD coupling[J]. Engineering Applications of Computational Fluid Mechanics, 2015, 9(1): 411-418. |
[13] | LIU D, TANG C, DING S C, et al. CFD-DEM si-mulation for distribution and motion feature of crystal particles in centrifugal pump[J]. International Journal of Fluid Machinery and Systems, 2017, 10(4): 378-384. |
[14] | TANG C, KIM Y J. CFD-DEM simulation for the distribution and motion feature of solid particles in single-channel pump[J]. Energies, 2020, 13(19): 4988. |
[15] | LI Y W, LIU S J, HU X Z. Research on rotating speed’s influence on performance of deep-sea lifting motor pump based on DEM-CFD[J]. Marine Georesources & Geotechnology, 2019, 37(8): 979-988. |
[16] | SU X H, TANG Z J, LI Y, et al. Research of particle motion in a two-stage slurry transport pump for deep-ocean mining by the CFD-DEM method[J]. Energies, 2020, 13(24): 6711. |
[17] | 李仁年, 辛芳, 韩伟, 等. 基于DDPM的螺旋离心泵磨蚀特性分析[J]. 兰州理工大学学报, 2017, 43(3): 54-60. |
[17] | LI Rennian, XIN Fang, HAN Wei, et al. Analysis of erosion characteristics of screw centrifugal pump based on DDPM[J]. Journal of Lanzhou University of Technology, 2017, 43(3): 54-60. |
[18] | MESSA G V, FERRARESE G, MALAVASI S. A mixed Euler-Euler/Euler-Lagrange approach to erosion prediction[J]. Wear, 2015, 342/343: 138-153. |
[19] | LU H L, GIDASPOW D. Hydrodynamics of binary fluidization in a riser: CFD simulation using two granular temperatures[J]. Chemical Engineering Science, 2003, 58(16): 3777-3792. |
[20] | WEN C Y, YU Y H. Mechanics of fluidization[J]. Chemical Engineering Progress, Symposium Series, 1966, 62(1): 100-111. |
[21] | ERGUN S. Fluid flow through packed column[J]. Journal of Materials Science and Chemical Engineering, 1952, 48(2): 89-94. |
[22] | GRANT G, TABAKOFF W. Erosion prediction in turbomachinery resulting from environmental solid particles[J]. Journal of Aircraft, 1975, 12(5): 471-478. |
[23] | OKA Y I, YOSHIDA T. Practical estimation of erosion damage caused by solid particle impact: Part 2: Mechanical properties of materials directly associated with erosion damage[J]. Wear, 2005, 259: 102-109. |
/
〈 |
|
〉 |