基于主从博弈的智能车汇流场景决策方法

展开
  • 上海交通大学 a.自动化系, 上海 200240
    b.密西根学院, 上海 200240
    c.系统控制与信息处理教育部重点实验室, 上海 200240
胡益恺(1996-),男,安徽省合肥市人,硕士生,主要研究方向为机器人

收稿日期: 2020-10-09

  网络出版日期: 2021-08-31

基金资助

国家自然科学基金(61873165);国家自然科学基金(U1764264);上海汽车工业科技发展基金(1807)

Stackelberg-Game-Based Intelligent Vehicle Decision Method for Merging Scenarios

Expand
  • a. Department of Automation, Shanghai 200240, China
    b. University of Michigan-Shanghai Jiao Tong University Joint Institute, Shanghai 200240, China
    c. Key Laboratory of System Control and Information Processing of the Ministry of Education, Shanghai Jiao Tong University, Shanghai 200240, China

Received date: 2020-10-09

  Online published: 2021-08-31

摘要

现有智能车决策方法未考虑路权信息、车辆礼貌驾驶以及车辆有限感知范围等因素,容易导致汇流时的安全隐患.针对该类问题,提出一种基于主从博弈的智能车辆决策方法.该方法通过构建结合路权的博弈模型,对汇流场景进行参数化建模,再引入合作因子等目标项设计相应的收益函数,最终设计汇流场景中的车辆决策求解框架,以达到该场景下决策收益的最大值.实验结果表明,所提方法能够提高在数据集上的车辆决策行为预测准确率,并能提高车辆在高车流密度环境中的决策稳健性.

本文引用格式

胡益恺, 庄瀚洋, 王春香, 杨明 . 基于主从博弈的智能车汇流场景决策方法[J]. 上海交通大学学报, 2021 , 55(8) : 1027 -1034 . DOI: 10.16183/j.cnki.jsjtu.2020.319

Abstract

Existing decision-making methods for intelligent vehicles do not consider factors such as the right of way information, polite driving of the vehicle, and limited perception range of the vehicle, which may easily lead to safety hazards in merging scenarios. Aimed at these problems, a Stackelberg-game-based decision-making method is proposed. This method constructs a game model combining the right of way and conducts parametric modeling of the merging scenarios. Then, the cooperation factor is introduced to design the corresponding profit function. Finally, the vehicle decision-making solution framework is designed to achieve the maximum value of decision-making benefits in this scenario. The experimental results illustrate that the proposed method can effectively improve the accuracy of vehicle decision-making behavior prediction on the datasets and the decision-making robustness in a high traffic density environment.

参考文献

[1] 胡兵, 杨明, 郭林栋, 等. 基于地面快速鲁棒特征的智能车全局定位方法[J]. 上海交通大学学报, 2019, 53(2):203-208.
[1] HU Bing, YANG Ming, GUO Lindong, et al. Global localization for intelligent vehicles using ground SURF[J]. Journal of Shanghai Jiao Tong University, 2019, 53(2):203-208.
[2] DE CAMPOS G R, FALCONE P, SJÖBERG J. Autonomous cooperative driving: A velocity-based negotiation approach for intersection crossing[C]//16th International IEEE Conference on Intelligent Transportation Systems (ITSC 2013). The Hague, Netherlands: IEEE, 2013: 1456-1461.
[3] AHMANE M, ABBAS-TURKI A, PERRONNET F, et al. Modeling and controlling an isolated urban intersection based on cooperative vehicles[J]. Transportation Research Part C: Emerging Technologies, 2013, 28:44-62.
[4] WANG Z R, WU G Y, BARTH M. Distributed consensus-based cooperative highway on-ramp merging using V2X communications[EB/OL]. (2018-04-03) [2020-06-14]. https://saemobilus.sae.org/content/2018-01-1177/ .
[5] WU J, ABBAS-TURKI A, EL MOUDNI A. Cooperative driving: An ant colony system for autonomous intersection management[J]. Applied Intelligence, 2012, 37(2):207-222.
[6] LEE J, PARK B. Development and evaluation of a cooperative vehicle intersection control algorithm under the connected vehicles environment[J]. IEEE Transactions on Intelligent Transportation Systems, 2012, 13(1):81-90.
[7] ALTHOFF M, STURSBERG O, BUSS M. Model-based probabilistic collision detection in autonomous driving[J]. IEEE Transactions on Intelligent Transportation Systems, 2009, 10(2):299-310.
[8] YUAN W, YANG M, HE Y S, et al. Multi-reward architecture based reinforcement learning for highway driving policies[C]//2019 IEEE Intelligent Transportation Systems Conference (ITSC). Auckland, New Zealand: IEEE, 2019: 3810-3815.
[9] CHEN J Y, TANG C, XIN L, et al. Continuous decision making for on-road autonomous driving under uncertain and interactive environments[C]//2018 IEEE Intelligent Vehicles Symposium (IV). Changshu: IEEE, 2018: 1651-1658.
[10] LEURENT E, MERCAT J. Social attention for autonomous decision-making in dense traffic[EB/OL]. (2019-11-27) [2020-06-14]. https://arxiv.org/abs/1911.12250 .
[11] KANG K, RAKHA H A. A repeated game freeway lane changing model[J]. Sensors, 2020, 20(6):1554.
[12] YU H T, TSENG H E, LANGARI R. A human-like game theory-based controller for automatic lane changing[J]. Transportation Research Part C: Emerging Technologies, 2018, 88:140-158.
[13] DREVES A, GERDTS M. A generalized Nash equilibrium approach for optimal control problems of autonomous cars[J]. Optimal Control Applications and Methods, 2018, 39(1):326-342.
[14] 杜继永, 张凤鸣, 毛红保, 等. 多UAV协同搜索的博弈论模型及快速求解方法[J]. 上海交通大学学报, 2013, 47(4):667-673.
[14] DU Jiyong, ZHANG Fengming, MAO Hongbao, et al. Game theory based multi-UAV cooperative searching model and fast solution approach[J]. Journal of Shanghai Jiao Tong University, 2013, 47(4):667-673.
[15] BAŞAR T, OLSDER G J. Dynamic noncooperative game theory[EB/OL].[2020-06-14]. https://epubs.siam.org/doi/book/10.1137/1.9781611971132 .
[16] LI N, YAO Y, KOLMANOVSKY I, et al. Game-theoretic modeling of multi-vehicle interactions at uncontrolled intersections[EB/OL].[2020-06-14]. https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9214866 .
[17] YOO J, LANGARI R. A predictive perception model and control strategy for collision-free autonomous driving[J]. IEEE Transactions on Intelligent Transportation Systems, 2019, 20(11):4078-4091.
[18] LUCA A, ORIOLO G, SAMSON C. Feedback control of a nonholonomic car-like robot[M]//LAUMOND J P. Robot Motion Planning and Control. Berlin, Germany: Springer, 1998.
[19] MURRAY R M, SASTRY S S. Nonholonomic motion planning: Steering using sinusoids[J]. IEEE Transactions on Automatic Control, 1993, 38(5):700-716.
[20] ZHAN W, SUN L T, WANG D, et al. INTERACTION dataset: An INTERnational, adversarial and cooperative moTION dataset in interactive driving scenarios with semantic maps[EB/OL]. (2019-09-01) [2020-06-14]. https://www.researchgate.net/publication/336413639_INTERACTION_Dataset_An_INTERnational_Adversarial_and_Cooperative_moTION_Dataset_in_Interactive_Driving_Scenarios_with_Semantic_Maps .
[21] ALEXIADIS V, COLYAR J, HALKIAS J, et al. The next generation simulation program[J]. Institute of Transportation Engineers. ITE Journal, 2004, 74(8):22.
文章导航

/