自由状态冰块尺寸及初始位置参数对冰桨耦合水动力性能的影响
收稿日期: 2019-09-17
网络出版日期: 2021-08-31
基金资助
国家自然科学基金(51679052);国家自然科学基金(51809055);国家自然科学基金(51909043);中国博士后科学基金(2019M651266);中国博士后科学基金(2020M681082);装备预研领域基金(JZX7Y20190247022501)
Influence of Free-State Ice Size and Initial Position on Coupled Hydrodynamic Performance of Ice Propeller
Received date: 2019-09-17
Online published: 2021-08-31
为了模拟无约束状态下自由运动冰块对螺旋桨水动力性能的影响,文章使用重叠网格方法建立了冰桨相互作用的非接触模型.计算中采用六面体网格对计算域进行网格划分,然后使用动态流体-固体相互作用方法来模拟螺旋桨抽吸作用下的冰块的运动,经与冰桨作用下冰块运动轨迹实验结果的比对,证实文章方法的准确性.通过对不同大小的冰块、冰块的初始径向位置、初始轴向位置等参数变化下的螺旋桨水动力性能计算结果分析,得知:运动的冰块后方会出现一定的加速区和阻塞区.冰块大小会直接影响螺旋桨水动力性能,大尺寸的冰块在接近螺旋桨时阻塞效应比小尺度冰块更大,对螺旋桨的水动力性能影响更显著.
王超, 刘正, 李兴, 汪春辉, 徐佩 . 自由状态冰块尺寸及初始位置参数对冰桨耦合水动力性能的影响[J]. 上海交通大学学报, 2021 , 55(8) : 990 -1000 . DOI: 10.16183/j.cnki.jsjtu.2019.262
In order to simulate the effect of free-moving ice on the hydrodynamic performance of the propeller, a non-contact model of ice-impeller interaction was established by using the overlapping grid method. In the calculation process, the hexahedral mesh was used to conduct mesh division of the computational domain, and the dynamic fluid body interaction (DFBI) method was used to simulate the motion of ice blocks under the propeller suction effect. The accuracy of the numerical method is verified by the experimental study on the action of the ice under the influence of the ice propeller. On this basis, the influences of different parameters such as ice size, the initial radial position of ice, and the initial axial position on the hydrodynamic performance of the propeller are obtained. The results show that there are a certain accelerating area and a certain blocking area behind the moving ice block. The size of ice block has a direct influence on the hydrodynamic performance of the propeller.
[1] | 郭春雨, 谢畅, 赵大刚. 冰级桨水动力性能研究综述[J]. 船舶工程, 2014, 43(4):1-8. |
[1] | GUO Chunyu, XIE Chang, ZHAO Dagang. Summary of research on hydrodynamic performance of ice propeller[J]. Ship Engineering, 2014, 43(4):1-8. |
[2] | 徐佩. 模型冰对螺旋桨水动力性能影响的试验研究[D]. 哈尔滨: 哈尔滨工程大学, 2016. |
[2] | XU Pei. Experimental study on the influence of mo-del ice on hydrodynamic performance of propeller[D]. Harbin: Harbin Engineering University, 2016. |
[3] | 武珅, 曾志波, 张国平. 冰阻塞参数对螺旋桨水动力性能影响试验研究[J]. 船舶力学, 2018, 22(2):156-164. |
[3] | WU Shen, ZENG Zhibo, ZHANG Guoping. Experimental study on influence of ice blocking parameters on hydrodynamic performance of propeller[J]. Ship Mechanics, 2018, 22(2):156-164. |
[4] | 王国亮. 冰-桨-流相互作用下的螺旋桨水动力性能研究[D]. 哈尔滨: 哈尔滨工程大学, 2017. |
[4] | WANG Guoliang. Study on hydrodynamic performance of propeller under ice-paddle-flow interaction[D]. Harbin: Harbin Engineering University, 2017. |
[5] | 孙盛夏. 冰桨干扰下螺旋桨诱导激振力预报分析[D]. 哈尔滨: 哈尔滨工程大学, 2017. |
[5] | SUN Shengxia. Prediction and analysis of propeller induced excitation force under ice propeller interference[D]. Harbin: Harbin Engineering University, 2017. |
[6] | 徐佩. 基于CFD-DEM耦合的螺旋桨-碎冰-水相互作用的数值模拟[J]. 哈尔滨工程大学学报, 2019, 60(1):121-138. |
[6] | XU Pei. Numerical simulation of propeller-crushing-water interaction based on CFD-DEM coupling[J]. Journal of Harbin Engineering University, 2019, 60(1):121-138. |
[7] | SHIH L Y, ZHENG Y. Constricted hydrodynamic flow due to proximate ice blockage over a blade profile in 2-D[C]//2nd International Conference on Propellers and Cavitation. Hangzhou, 1992: 74-79. |
[8] | YAMAGUCHI H. Investigation on propeller performance in uniform and blocked flow for the open propellers used in the IMD ice tank and cavitation yunnel experiments[R]. Laboratory Memorandum(National Research Council of Canada, Institute for Marine Dynamics). Newfoundland: National Research Council of Canada, 1993: 11. |
[9] | BOSE N. Ice blocked propeller performance predictions using a panel method[J]. Transactions of the Royal Institute of Naval Architects, 1996, 138:213-226. |
[10] | LUZNIK L, WALKER D, BOSE N, et al. Effects of ice blockage size and proximity on propeller performance during non-contact propeller-ice interaction[C]//14th International Conference on Offshore Mechanics and Arctic Engineering (OMAE). Copenhagen, Denmark, 1995: 53. |
[11] | WAIKER D N L. The influence of blockage and cavitation on the hydrodynamic performance of Ice class propellers in blocked flow[D]. Newfoundland: Memorial University of Newfoundland, 1996. |
[12] | VEITCH B. Predictions of ice contact forces on a marine screw propeller during the propeller-ice cutting process[J]. British Maritime Technology, 1995, 118:1-110. |
[13] | LIU P, DOUCET J M, VEITCH B, et al. Numerical prediction of ice induced hydrodynamic loads on propellers due to blockage[J]. Oceanic Engineering International, 2000, 4(1):31-38. |
[14] | LIU P, BOSE N, COLBOURNE B. A Broyden numerical kutta condition for an unsteady panel method[J]. International Shipbuilding Progress, 2002, 49(4):263-273. |
[15] | 叶礼裕, 王超, 常欣, 等. 冰桨接触的近场动力学模型[J]. 哈尔滨工程大学学报, 2018, 39(2):222-228. |
[15] | YE Liyu, WANG Chao, CHANG Xin, et al. Near-field dynamics model of ice-propeller contact[J]. Journal of Harbin Engineering University, 2018, 39(2):222-228. |
[16] | 王超, 叶礼裕, 常欣, 等. 非接触工况下冰桨干扰水动力载荷实验研究[J]. 哈尔滨工程大学学报, 2017, 38(8):1190-1196. |
[16] | WANG Chao, YE Liyu, CHANG Xin, et al. Experimental study on hydrodynamic loading of ice-propeller under non-contact conditions[J]. Journal of Harbin Engineering University, 2017, 38(8):1190-1196. |
[17] | 沈洪道. 冰动力学的拉格郎日离散元模式[J]. 海洋预报, 1999(3):71-84. |
[17] | SHEN Hongdao. Ice dynamics Lagrangian discrete element model[J]. Ocean Forecast, 1999(3):71-84. |
/
〈 |
|
〉 |