C11集装箱船参数横摇运动极值响应分析
收稿日期: 2020-04-24
网络出版日期: 2021-08-31
基金资助
国家自然科学基金(51779042);国家重点研发计划(2017YFE0111400);国家重点研发计划(2018YFC0310502);中央高校基本科研业务费(DUT2019TD35)
Extreme Response Analysis of Parametric Roll of C11 Container Ship
Received date: 2020-04-24
Online published: 2021-08-31
基于窄带随机过程理论和Hermite变换法,本文提出了一种预测船舶参数横摇极值响应的新方法.以C11集装箱船为例,预测了其随机参数横摇极值响应的均值.将该结果与基于Monte Carlo法的数值结果对比,误差小于1%,证明了本文方法的正确性.同时,本文方法使用20条时间历程样本的预测精度与Monte Carlo法使用104条时间历程样本的预测精度相同,由此可以证明本文方法的高效性.本文还利用传统Gumbel模型对C11船参数横摇极值响应进行了预测.通过比较可以发现传统Gumbel模型的极值预测误差很大,证明传统Gumbel模型不适用于参数横摇这类非线性较强的运动极值预测.但是,即使利用新方法预测极值,也和模型试验结果之间存在一定的偏差.通过分析认为,这种预测误差是由于忽略了极大值之间的相关性导致的.
周小宇, 李红霞, 黄一 . C11集装箱船参数横摇运动极值响应分析[J]. 上海交通大学学报, 2021 , 55(8) : 984 -989 . DOI: 10.16183/j.cnki.jsjtu.2020.085
Based on the narrow-band stochastic processes theory and Hermite transform, this paper proposed a method to study the extreme dynamic response of the parametric roll of ships. Taking the C11 container ship as an example, the average extremum of the stochastic parametric roll of the ship was estimated. A comparison of the results of Monte Carlo simulation indicates that the estimation error is lower than 1%, which proves that the proposed method is valid. Meanwhile, the prediction accuracy of the proposed method in this paper by using 20 time history samples is the same as that of the Monte Carlo method by using 104 time history samples, which proves the efficiency of the proposed method. Then, the conventional Gumbel model was used to estimate the extremum of the C11 parametric roll. A comparison of the results shows that the estimation error of the conventional Gumbel model is quite large, proving that the conventional Gumbel model is not appropriate to estimate the extreme responses of strong non-linear motions, such as the parametric roll of ships. However, even if the proposed method is used to predict extreme values, there is a certain deviation from the model test results. The analysis indicates that this prediction error is caused by ignoring the correlation between the maximum values.
[1] | XIAO Z, HEZHEN Y. Probability analysis for ship parametric rolling in irregular waves[J]. Chinese Journal of Ship Research, 2015(3):32-36. |
[2] | FU C, MA S, DUAN W, et al. Sensitivity factors in parametric rolling of containership C11 and improvement measure[J]. Shipbuilding of China, 2015 (Sup.1):72-80. |
[3] | ZHOU Y H, MA N, LU J, et al. A study of hybrid prediction method for ship parametric rolling[J]. Journal of Hydrodynamics, Ser B, 2016, 28(4):617-628. |
[4] | MOHAMAD M A, SAPSIS T P. Probabilistic response and rare events in Mathieu’s equation under correlated parametric excitation[J]. Ocean Engineering, 2016, 120:289-297. |
[5] | LIU L Q, LIU Y L, XU W H, et al. A semi-analy-tical method for the PDFs of a ship rolling in random oblique waves[J]. China Ocean Engineering, 2018, 32(1):74-84. |
[6] | KIDO K. Hilbert transform[M]. New York, NY: Springer New York, 2014: 105-130. |
[7] | DOSTAL L, KREUZER E. Numerical computation of parametric induced roll motions in random seas[J]. PAMM, 2009, 9(1):555-556. |
[8] | DOSTAL L, KREUZER E, NAMACHCHIVAYA N S. Stochastic averaging of roll-pitch and roll-heave motion in random seas[J]. Procedia IUTAM, 2013, 6:132-140. |
[9] | LU J, UMEDA N, MA K. Predicting parametric rolling in irregular head seas with added resistance taken into account[J]. Journal of Marine Science and Technology, 2011, 16(4):462-471. |
[10] | WINTERSTEIN S R. Non-normal responses and fatigue damage[J]. Journal of Engineering Mechanics, 1985, 111(10):1291-1295. |
[11] | XIAO L, LU H, LI X, et al. Probability analysis of wave run-ups and air gap response of a deepwater semisubmersible platform using LH-moments estimation method[J]. Journal of Waterway, Port, Coastal, and Ocean Engineering, 2016, 142(2):04015019. |
[12] | 高山, 郑向远, 黄一. 非高斯随机过程的短期极值估计: 复合Hermite模型[J]. 工程力学, 2019, 36(1):23-31. |
[12] | GAO Shan, ZHENG Xiangyuan, HUANG Yi. Hybrid hermite models for short term extrema estimation of non-Gaussian processes[J]. Engineering Mechanics, 2019, 36(1):23-31. |
[13] | 田玉基, 杨庆山. 非高斯风压时程极大值因子的简化计算式[J]. 建筑结构学报, 2015, 36(3):20-28. |
[13] | TIAN Yuji, YANG Qingshan. Reduced formula of peak factor for non-Gaussian wind pressure history[J]. Journal of Building Structures, 2015, 36(3):20-28. |
[14] | CARTWRIGHT D E. The statistical distribution of the maxima of a random function[J]. Proceedings of the Royal Society of London Series A Mathematical and Physical Sciences, 1956, 237(1209):212-232. |
[15] | 王勃, 董元正, 董丽欣. 基于短期风速资料的基本风压计算方法[J]. 吉林大学学报(工学版), 2020, 50(5):1739-1746. |
[15] | WANG Bo, DONG Yuanzheng, DONG Lixin. Calculation of basic wind pressure based on short-term wind speed data[J]. Journal of Jilin University (Engineering and Technology Edition), 2020, 50(5):1739-1746. |
[16] | NAESS A. The effect of the Markov chain condition on the prediction of extreme values[J]. Journal of Sound and Vibration, 1984, 94(1):87-103. |
/
〈 |
|
〉 |