非均匀流场螺旋桨空泡数值模拟
收稿日期: 2020-07-06
网络出版日期: 2021-08-31
Numerical Simulation of Propeller Cavitation in Non-Uniform Flow
Received date: 2020-07-06
Online published: 2021-08-31
以某油船螺旋桨为研究对象,基于Rayleigh-Plesset方程,采用Schnerr-Sauer 空化模型和可实现的k-ε两层湍流模型,利用计算流体力学(CFD)软件STAR-CCM+模拟了非均匀来流条件下螺旋桨的空泡形态.通过对螺旋桨叶梢区域进行有效合理的网格加密,以较少的网格数量成功捕获梢涡空泡.数值计算与试验结果对比表明:计算结果准确再现了桨叶进出伴流区域空泡初生、发展和溃灭的整个历程;每个相位角叶背片空泡形态与试验观察吻合,片空泡面积相差在5%以内;该数值方法虽然能够捕捉到梢涡空泡,但是还不能对梢涡空泡的非定常特性和空间结构进行准确预测.基于上述结果,该方法适用于非均匀流螺旋桨空泡流动模拟.
刘恒, 伍锐, 孙硕 . 非均匀流场螺旋桨空泡数值模拟[J]. 上海交通大学学报, 2021 , 55(8) : 976 -983 . DOI: 10.16183/j.cnki.jsjtu.2020.211
Taking a certain oil tanker propeller as the research object, and using Schnerr-Sauer cavitation model based on Rayleigh-Plesset equation and the realizable k-ε two-layer turbulence model, the cavitation pattern around the propeller in non-uniform flow conditions is simulated by using the computational fluid dynamics (CFD) software STAR-CCM+. Through effective and reasonable mesh densification of the propeller blade tip area, the tip vortex cavitation is successfully captured with a small number of meshes. The comparison between numerical calculation and test results shows that the whole process of cavitation inception, development, and collapse in wake flow can be accurately reproduced. The back-sheet cavitation pattern at each phase angle is in good agreement with the test results and the difference of cavitation area between calculation and the experiment is within 5%. Although the numerical method can capture the tip vortex cavitation, it cannot accurately predict the unsteady characteristics and spatial structure of the tip vortex cavitation. Based on the above results, it can be concluded this numerical methodology is suitable for simulating cavitation flows around propeller in non-uniform flow.
Key words: numerical simulation; non-uniform flow; cavitation; propeller
[1] | 盛振邦, 刘应中. 船舶原理[M]. 上海: 上海交通大学出版社, 2005. |
[1] | SHENG Zhenbang, LIU Yingzhong. Principles of shipping[M]. Shanghai: Shanghai Jiao Tong University Press, 2005. |
[2] | YOUNG Y L, KINNAS S A. Numerical modeling of supercavitating propeller flows[J]. Journal of Ship Research, 2003, 47(1):48-62. |
[3] | NIEDZWIEDZKA A, SCHNERR G H, SOBIESKI W. Review of numerical models of cavitating flows with the use of the homogeneous approach[J]. Archives of Thermodynamics, 2016, 37(2):71-88. |
[4] | HSIAO C T, MA J S, CHAHINE G L. Multiscale tow-phase flow modeling of sheet and cloud cavitation[J]. International Journal of Multiphase Flow, 2017, 90:102-117. |
[5] | 朱志峰, 方世良, 王晓燕. 船舶螺旋桨黏性空化流场数值方法[J]. 东南大学学报(自然科学版), 2010, 40(6):24-29. |
[5] | ZHU Zhifeng, FANG Shiliang, WANG Xiaoyan. Numerical method for viscous capitating flow around ship propeller[J]. Journal of Southeast University (Natural Science Edition), 2010, 40(6):24-29. |
[6] | LIU Z H, WANG B L, PENG X X, et al. Calculation of tip vortex cavitation flows around three-dimensional hydrofoils and propellers using a nonlinear k-ε turbulence model[J]. Journal of Hydrodynamics, Ser. B, 2016, 28(2):227-237. |
[7] | 胡健, 王雅楠, 王晴, 等. 基于螺旋加密网格的螺旋桨梢涡空化数值模拟[J]. 华中科技大学学报(自然科学版), 2020, 48(3):30-34. |
[7] | HU Jian, WANG Yanan, WANG Qing, et al. Numerical simulation of propeller tip vortex cavitation based on helical mesh encryption[J]. Journal of Huazhong University of Science and Technology (Nature Science Edition), 2020, 48(3):30-34. |
[8] | 刘芳远, 傅慧萍, 李杰. 螺旋桨梢涡及梢涡空泡数值模拟[J]. 船舶力学, 2019, 23(4):388-396. |
[8] | LIU Fangyuan, FU Huiping, LI Jie. Numerical si-mulation of propeller tip vortex and TVC[J]. Journal of Ship Mechanics, 2019, 23(4):388-396. |
[9] | JI B, LUO X W, PENG X X, et al. Numerical analysis of cavitation evolution and excited pressure fluctuation around a propeller in non-uniform wake[J]. International Journal of Multiphase Flow, 2012, 43:13-21. |
[10] | 傅慧萍, 李杰. 斜流中的螺旋桨空化及压力脉动计算[J]. 中国造船, 2018, 59(3):1-12. |
[10] | FU Huiping, LI Jie. Calculation of propeller cavita-tion and pressure pulse in oblique flow[J]. Shipbuilding of China, 2018, 59(3):1-12. |
[11] | SCHNERR G H, SAUER J. Physical and numerical modeling of unsteady cavitation dynamics[C]//4th International Conference on Multiphase Flow. New Orleans: ICMF-2001, 2001: 1-12. |
[12] | 崔健, 伍锐, 孙硕, 等. 螺旋桨空泡观测技术研究[J]. 水动力学研究与进展A辑, 2020, 35(5):7-18. |
[12] | CUI Jian, WU Rui, SUN Shuo, et al. Research of experimental technique on propeller cavitation observation[J]. Chinese Journal of Hydrodynamics. Ser. A, 2020, 35(5):7-18. |
[13] | TAO X, FREDERICK S. Closure to “Discussion of ‘factors of safety for Richardson Extrapolation’”[J]. Journal of Fluids Engineering, 2011, 133(11):1-6. |
/
〈 |
|
〉 |