基于大涡模拟的圆柱绕流剪切层不稳定性

展开
  • 上海交通大学 a.机械与动力工程学院, 上海 200240
    b.燃气轮机与民用航空发动机教育部工程研究中心, 上海 200240
郭志远(1992-),男,河南省安阳市人,硕士生,主要研究方向为航空发动机压气机流动和计算流体力学

收稿日期: 2019-09-19

  网络出版日期: 2021-08-31

基金资助

国家科技重大专项(2017-II-0007-0021);上海交通大学科技创新专项资金(17X110070002)

Shear Layer Instability of Flow Around a Circular Cylinder Based on Large Eddy Simulation

Expand
  • a. School of Mechanical Engineering, Shanghai 200240, China
    b. Engineering Research Center of Gas Turbine and Civil Aero Engine of the Ministry of Education, Shanghai Jiao Tong University, Shanghai 200240, China

Received date: 2019-09-19

  Online published: 2021-08-31

摘要

圆柱绕流是一种常见的流体力学研究对象,随着雷诺数(Re)增加,其下游尾迹剪切层中会产生开尔文-亥姆霍兹不稳定性现象.利用大涡模拟方法,数值求解中等Re(Re=2000, 3900, 5000)的圆柱绕流问题,可得圆柱下游的精细化流场,继而开展对剪切层不稳定性的深入研究.为获得剪切层不稳定性的特征频率,分别采用传统的监测点分析与局部流场的动态模态分解方法进行计算.结果显示,两种方法得到的频率基本一致.不过,相比传统方法,动态模态分解方法一方面能克服人为选择监测点带来的随机误差,较便捷地给出剪切层不稳定性特征频率,另一方面还能进一步通过不同流场模态分析出不同Re对剪切层不稳定性特性的影响.

本文引用格式

郭志远, 虞培祥, 欧阳华 . 基于大涡模拟的圆柱绕流剪切层不稳定性[J]. 上海交通大学学报, 2021 , 55(8) : 924 -933 . DOI: 10.16183/j.cnki.jsjtu.2019.266

Abstract

The flow around a cylinder is a common research object of fluid mechanics. As the Reynolds number (Re) increases, the Kelvin-Helmholtz instability of the shear layer will occur in the wake behind the cylinder. Using the large eddy simulation method to investigate the problem numerically in a medium range of Re (Re=2000, 3900, 5000), the refined flow field behind the cylinder can be obtained, and an in-depth study of the instability of the shear layer can be conducted. To get the characteristic frequency of the shear layer instability, two methods, i.e., the traditional analysis of monitoring points and the dynamic mode decomposition method on the local flow field, are used. The results show that the frequencies obtained by the two methods are basically the same. However, compared with the traditional method, the dynamic mode decomposition method can overcome the random error caused by the artificial selection of monitoring points, and can give the characteristic frequency of shear layer instability more conveniently. In addition, it can further analyze the influence of different Re values on the instability characteristics of the shear layer based on different flow field modes.

参考文献

[1] 胡如云, 王亮, 符松. 后台阶流动及其控制述评[J]. 中国科学: 物理学力学天文学, 2015, 45(12):124704.
[1] HU Ruyun, WANG Liang, FU Song. Review of backward-facing step flow and separation reduction[J]. Sci Sin-Phys Mech Astron, 2015, 45(12):124704.
[2] 艾国远, 叶建. 低雷诺数下翼型不同分离流态的大涡模拟[J]. 空气动力学学报, 2017, 35(2):299-304.
[2] AI Guoyuan, YE Jian. Large eddy simulation of different flow separation patterns of airfoil at low Reynolds number[J]. Acta Aerodynamica Sinica, 2017, 35(2):299-304.
[3] 姚丹, 田杰, 欧阳华, 等. 压气机旋转不稳定性的周向模态特性及其分解方法[J]. 航空动力学报, 2018, 33(2):431-439.
[3] YAO Dan, TIAN Jie, OUYANG Hua, et al. Circumferential mode characteristic of rotating instability and its decomposition method of compressor[J]. Journal of Aerospace Power, 2018, 33(2):431-439.
[4] LEHMKUHL O, RODRÍGUEZ I, BORRELL R, et al. Low-frequency unsteadiness in the vortex formation region of a circular cylinder[J]. Physics of Fluids, 2013, 25(8):085109.
[5] PRASAD A, WILLIAMSON C H K. The instability of the shear layer separating from a bluff body[J]. Journal of Fluid Mechanics, 1997, 333:375-402.
[6] DONG S, KARNIADAKIS G E, EKMEKCI A, et al. A combined direct numerical simulation—Particle image velocimetry study of the turbulent near wake[J]. Journal of Fluid Mechanics, 2006, 569:185-207.
[7] ALJURE D E, LEHMKHUL O, RODRÍGUEZ I, et al. Three dimensionality in the wake of the flow around a circular cylinder at Reynolds number 5000[J]. Computers & Fluids, 2017, 147:102-118.
[8] LYSENKO D A, ERTESVAG I S, RIAN K E. Large-eddy simulation of the flow over a circular cylinder at Reynolds number 3900 using the OpenFOAM toolbox[J]. Flow, Turbulence and Combustion, 2012, 89(4):491-518.
[9] TAIRA K, BRUNTON S L, DAWSON S T M, et al. Modal analysis of fluid flows: An overview[J]. AIAA Journal, 2017, 55(12):4013-4041.
[10] 寇家庆, 张伟伟. 动力学模态分解及其在流体力学中的应用[J]. 空气动力学学报, 2018, 36(2):163-179.
[10] KOU Jiaqing, ZHANG Weiwei. Dynamic mode decomposition and its application in fluid dynamics[J]. Acta Aerodynamica Sinica, 2018, 36(2):163-179.
[11] KOU J Q, ZHANG W W. An improved criterion to select dominant modes from dynamic mode decomposition[J]. European Journal of Mechanics—B/Fluids, 2017, 62:109-129.
[12] HEMATI M S, WILLIAMS M O, ROWLEY C W. Dynamic mode decomposition for large and streaming datasets[J]. Physics of Fluids, 2014, 26(11):5-28.
[13] ZHANG Q S, LIU Y Z, WANG S F. The identification of coherent structures using proper orthogonal decomposition and dynamic mode decomposition[J]. Journal of Fluids and Structures, 2014, 49:53-72.
[14] WANG L, FENG L H. Extraction and reconstruction of individual vortex-shedding mode from bistable flow[J]. AIAA Journal, 2017, 55(7):1-13.
[15] TISSOT G, CORDIER L, BENARD N, et al. Model reduction using dynamic mode decomposition[J]. Comptes Rendus Mécanique, 2014, 342(6/7):410-416.
[16] NOACK B R, STANKIEWICZ W, MORZYNSKI M, et al. Recursive dynamic mode decomposition of transient and post-transient wake flows[J]. Journal of Fluid Mechanics, 2016, 809:843-872.
[17] NICOUD F, DUCROS F. Subgrid-scale stress modelling based on the square of the velocity gradient tensor[J]. Flow, Turbulence and Combustion, 1999, 62(3):183-200.
[18] RODRÍGUEZ I, LEHMKUHL O, CHIVA J, et al. On the flow past a circular cylinder from critical to super-critical Reynolds numbers: Wake topology and vortex shedding[J]. International Journal of Heat and Fluid Flow, 2015, 55:91-103.
[19] 端木玉, 万德成. 雷诺数为3900时三维圆柱绕流的大涡模拟[J]. 海洋工程, 2016, 34(6):11-20.
[19] DUANMU Yu, WAN Decheng. Large eddy simulation of the three-dimensional flow past a cylinder at Re=3900[J]. The Ocean Engineering, 2016, 34(6):11-20.
[20] LUO D, YAN C, LIU H, et al. Comparative assessment of PANS and DES for simulation of flow past a circular cylinder[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2014, 134:65-77.
[21] PARNAUDEAU P, CARLIER J, HEITZ D, et al. Experimental and numerical studies of the flow over a circular cylinder at Reynolds number 3900[J]. Physics of Fluids, 2008, 20(8):085101.
[22] RAJANI B N, KANDASAMY A, MAJUMDAR S. LES of flow past circular cylinder at Re=3900[J]. Journal of Applied Fluid Mechanics, 2016, 9(3):1421-1435.
[23] MA X, KARAMANOS G S, KARNIADAKIS G E. Dynamics and low-dimensionality of a turbulent near wake[J]. Journal of Fluid Mechanics, 2000, 410:29-65.
[24] 叶坤, 武洁, 叶正寅, 等. 动力学模态分解和本征正交分解对圆柱绕流稳定性的分析[J]. 西北工业大学学报, 2017, 35(4):599-607.
[24] YE Kun, WU Jie, YE Zhengyin, et al. Analyst of stability of flow past a cylinder using dynamic mode decomposition and proper orthogonal decomposition[J]. Journal of Northwestern Polytechnical University, 2017, 35(4):599-607.
文章导航

/