考虑蒙皮透射率的飞艇热力学模型及其热特性

展开
  • 上海交通大学 航空航天学院, 上海 200240
程 晨(1994-),女,湖北省黄石市人,硕士生,从事浮空器热特性等研究

收稿日期: 2019-02-15

  网络出版日期: 2021-07-30

基金资助

国家自然科学基金(61733017);上海市自然科学基金(18ZR1419000)

Thermal Dynamic Model and Thermal Characteristics of Airships Considering Skin Transmittance

Expand
  • School of Aeronautics and Astronautics, Shanghai Jiao Tong University, Shanghai 200240, China

Received date: 2019-02-15

  Online published: 2021-07-30

摘要

以平流层飞艇为研究对象,在考虑飞艇表面蒙皮的透射特性以及内部填充气体对辐射的吸收率与发射率的基础上,推导出飞艇表面蒙皮及内部填充气体的热力学方程.通过有限拆分法建立了考虑蒙皮透射率的飞艇热力学仿真模型,并分析比较了典型蒙皮材料下飞艇的热力学特性.通过将飞艇外形建模和表面离散化处理,针对每个单元和内部填充气体进行瞬态热特性数值计算,分析了仿真模型中网格划分及时间步长对计算结果的影响.通过相关实验数据对所建立的模型及其求解方法的可靠有效性进行了验证,分析比较了不同特性蒙皮材料的飞艇热特性及其变化规律.

本文引用格式

程晨, 王晓亮 . 考虑蒙皮透射率的飞艇热力学模型及其热特性[J]. 上海交通大学学报, 2021 , 55(7) : 868 -877 . DOI: 10.16183/j.cnki.jsjtu.2019.039

Abstract

Taking stratospheric airship as the research object, considering the transmission characteristics of the airship surface and the absorption rate and emissivity of the inner filling gas to radiation, the thermodynamic equations of the airship surface skin and inner filling gas are deduced. The thermodynamic simulation model of the airship considering the transmittance of the skin is established by using the sub-method, and the thermodynamic characteristics of airship under typical skin materials are analyzed and compared. Through airship shape modeling and surface discretization, the transient thermal characteristics of each unit and internal gas are calculated, and the influence of the mesh division and time step in the simulation model on the calculation results is analyzed. The data verifies the reliability and validity of the established model and its solution method, and the thermal characteristics and the changing laws of airships with different characteristics of skin materials are analyzed and compared.

参考文献

[1] WU J T, XIA D F, WANG Z G, et al. Thermal modeling of stratospheric airships[J]. Progress in Aerospace Sciences, 2015, 75:26-37.
[2] 方贤德, 王伟志, 李小建. 平流层飞艇热仿真初步探讨[J]. 航天返回与遥感, 2007, 28(2): 5-9.
[2] FANG Xiande, WANG Weizhi, LI Xiaojian. A study of thermal simulation of stratospheric airships[J]. Spacecraft Recovery & Remote Sensing, 2007, 28(2): 5-9.
[3] 徐向华, 程雪涛, 梁新刚. 平流层浮空器的热数值分析[J]. 清华大学学报(自然科学版), 2009, 49(11): 1848-1851.
[3] XU Xianghua, CHENG Xuetao, LIANG Xingang. Thermal analysis of a stratospheric airship[J]. Journal of Tsinghua University (Science and Technology), 2009, 49(11): 1848-1851.
[4] GARDE G. Thermal modeling of NASA’s super pressure pumpkin balloon [C]// AIAA Balloon Systems Conference. Reston, Virginia: AIAA, 2007.
[5] 戴秋敏. 浮空器热环境与热特性研究[D]. 南京: 南京航空航天大学, 2014.
[5] DAI Qiumin. Study on thermal environment and thermal characteristics of airships[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2014.
[6] 刘婷婷, 麻震宇, 杨希祥, 等. 太阳电池对平流层飞艇热特性的影响分析[J]. 宇航学报, 2018, 39(1): 35-42.
[6] LIU Tingting, MA Zhenyu, YANG Xixiang, et al. Influence of solar cells on thermal characteristics of stratospheric airship[J]. Journal of Astronautics, 2018, 39(1): 35-42.
[7] FARLEY R. BalloonAscent: 3-D simulation tool for the ascent and float of high-altitude balloons [C]// AIAA 5th ATIO and16th Lighter-Than-Air Sys Tech and Balloon Systems Conferences. Reston, Virginia: AIAA, 2005.
[8] KAYHAN Ö, HASTAOGLU M A. Modeling of stratospheric balloon using transport phenomena and gas compress-release system[J]. Journal of Thermophysics and Heat Transfer, 2014, 28(3): 534-541.
[9] YAO W, LU X C, WANG C, et al. A heat transient model for the thermal behavior prediction of stratospheric airships[J]. Applied Thermal Engineering, 2014, 70(1): 380-387.
[10] DAI Q M, XIA D F, LI X J, et al. Performance si-mulation of high altitude scientific balloons[J]. Advances in Space Research, 2012, 49(6): 1045-1052.
[11] ZHENG W, ZHANG X Y, MA R, et al. A simplified thermal model and comparison analysis for a stratospheric lighter-than-air vehicle[J]. Journal of Heat Transfer, 2018, 140(2): 022801.
[12] 赵攀峰, 李大鹏, 谭百贺, 等. 平流层飞艇热力学建模与仿真研究[J]. 合肥工业大学学报(自然科学版), 2013, 36(4): 501-505.
[12] ZHAO Panfeng, LI Dapeng, TAN Baihe, et al. Thermodynamic modeling and simulation of stratospheric airship[J]. Journal of Hefei University of Technology (Natural Science), 2013, 36(4): 501-505.
[13] CARLSON L A, HORN W J. New thermal and trajectory model for high-altitude balloons[J]. Journal of Aircraft, 1983, 20(6): 500-507.
[14] 李小建. 临近空间浮空器热—结构耦合数值模拟研究[D]. 南京: 南京航空航天大学, 2013.
[14] LI Xiaojian. Numerical simulation of thermal-structure coupling for near space airship[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2013.
[15] 张贺磊, 方贤德, 戴秋敏. 蒙皮材料对浮空器热特性影响的研究[J]. 航空计算技术, 2016, 46(3): 41-45.
[15] ZHANG Helei, FANG Xiande, DAI Qiumin. Investigation on impact of skin material on thermal characteristics of stratospheric aerostat[J]. Aeronautical Computing Technique, 2016, 46(3): 41-45.
[16] 李德富. 平流层浮空器的热特性及其动力学效应研究[D]. 哈尔滨: 哈尔滨工业大学, 2011.
[16] LI Defu. Thermal behavior and its dynamic effects on stratospheric aerostats[D]. Harbin: Harbin Institute of Technology, 2011.
[17] 张涛, 孙冰. 复杂结构角系数计算方法[J]. 航空动力学报, 2009, 24(4): 753-759.
[17] ZHANG Tao, SUN Bing. Numerical computation of view factor of complicated configuration[J]. Journal of Aerospace Power, 2009, 24(4): 753-759.
[18] 杨世铭, 陶文铨. 传热学[M]. 北京: 高等教育出版社, 2006.
[18] YANG Shiming, TAO Wenquan. Heat transfer[M]. Beijing: High Education Press, 2006.
[19] CHEN K K, THYSON N A. Extension of Emmons’spot theory to flows on blunt bodies[J]. AIAA Journal, 1971, 9(5): 821-825.
[20] HOLMAN J P. Heat Transfer[M]. New York: McGraw-Hill, 2002.
[21] RAITHBY G D, HOLLANDS K G T. A general method of obtaining approximate solutions to laminar and turbulent free convection problems[J]. Advances in Heat Transfer, 1975, 11:265-315.
文章导航

/