多元退化系统维修与备件订购策略优化模型

展开
  • 1.陆军工程大学石家庄校区 装备指挥与管理系,石家庄 050003
    2.河北科技大学 信息科学与工程学院, 石家庄 050000
杨志远(1990-),男,河北省石家庄市人,博士生,主要研究方向为装备维修保障理论与技术

收稿日期: 2019-07-29

  网络出版日期: 2021-07-30

基金资助

国家自然科学基金资助项目(71871220);国家自然科学基金资助项目(71871219)

Optimization Model of Maintenance and Spare Parts Ordering Policy in Multivariate Degradation System

Expand
  • 1. Department of Equipment Command and Management, Shijiazhuang Campus of Army Engineering University, Shijiazhuang 050003, China
    2. School of Information Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050000, China

Received date: 2019-07-29

  Online published: 2021-07-30

摘要

针对具有多个相关退化过程系统的状态维修及备件订购决策问题,在连续监测条件下,建立系统维修与备件订购决策优化模型.首先,采用Gamma过程和Copula函数建立系统多元退化模型,然后提出基于控制限策略的系统维修与备件订购策略.在此基础上,考虑系统退化量对维修费用的影响,获得系统长期运行条件下的期望维修费用率解析表达式.同时为简化模型计算,提出系统期望维修费用率近似表达式.利用人工蜂群算法在费用准则下获得系统最优预防性更换阈值和备件订购阈值.案例分析结果说明了在维修决策中考虑退化相关的必要性.与已有策略相比,综合优化预防性更换和备件订购阈值能够有效降低系统维修费用.

本文引用格式

杨志远, 赵建民, 程中华, 郭驰名, 李俐莹 . 多元退化系统维修与备件订购策略优化模型[J]. 上海交通大学学报, 2021 , 55(7) : 858 -867 . DOI: 10.16183/j.cnki.jsjtu.2019.221

Abstract

Aimed at the decision-making problem of condition-based maintenance and spare parts ordering for systems with multiple dependent degradation processes, an optimization model of system maintenance and spare parts ordering policy is developed under the condition of continuously monitoring. First, the Gamma process and Copula function are used to develop the system multivariate degradation model. Then, the system maintenance and spare parts ordering policy based on the control limit strategy is proposed. Considering the influence of system degradation on maintenance cost, the analytical expression of the expected maintenance cost rate under long-term operation conditions is obtained. At the same time, an approximate expression of the expected maintenance cost rate is proposed to simplify the model calculation. The optimal preventive replacement threshold and spare parts ordering threshold of the system are obtained by using the artificial bee colony algorithm under the cost criterion. The case analysis shows that it is necessary to consider degradation in maintenance decision-making. Compared with the existing policy, the comprehensive optimization of preventive replacement and spare parts ordering thresholds can effectively reduce the maintenance cost of the system.

参考文献

[1] LEE J, WU F J, ZHAO W, et al. Prognostics and health management design for rotary machinery systems—Reviews, methodology and applications[J]. Mechanical Systems and Signal Processing, 2014, 42(1/2): 314-334.
[2] DE JONGE B, TEUNTER R, TINGA T. The influence of practical factors on the benefits of condition-based maintenance over time-based maintenance[J]. Reliability Engineering & System Safety, 2017, 158:21-30.
[3] OLDE KEIZER M C A, FLAPPER S D P, TEUNTER R H. Condition-based maintenance policies for systems with multiple dependent components: A review[J]. European Journal of Operational Research, 2017, 261(2): 405-420.
[4] PAN Z Q, BALAKRISHNAN N. Reliability modeling of degradation of products with multiple performance characteristics based on gamma processes[J]. Reliability Engineering & System Safety, 2011, 96(8): 949-957.
[5] WANG X L, BALAKRISHNAN N, GUO B. Residual life estimation based on nonlinear-multivariate Wiener processes[J]. Journal of Statistical Computation and Simulation, 2015, 85(9): 1742-1764.
[6] RASMEKOMEN N, PARLIKAD A K. Condition-based maintenance of multi-component systems with degradation state-rate interactions[J]. Reliability Engineering & System Safety, 2016, 148:1-10.
[7] 杨志远, 赵建民, 程中华. 退化相关多部件系统预防性维修决策模型[J]. 系统工程与电子技术, 2018, 40(4): 823-832.
[7] YANG Zhiyuan, ZHAO Jianmin, CHENG Zhonghua. Preventive maintenance decision model of multi-component system with degradation interaction[J]. Systems Engineering and Electronics, 2018, 40(4): 823-832.
[8] WANG X L, BALAKRISHNAN N, GUO B, et al. Residual life estimation based on bivariate non-stationary gamma degradation process[J]. Journal of Statistical Computation and Simulation, 2015, 85(2): 405-421.
[9] WANG X L, GUO B, CHENG Z J. Residual life estimation based on bivariate Wiener degradation process with time-scale transformations[J]. Journal of Statistical Computation and Simulation, 2014, 84(3): 545-563.
[10] HONG H P, ZHOU W, ZHANG S, et al. Optimal condition-based maintenance decisions for systems with dependent stochastic degradation of components[J]. Reliability Engineering & System Safety, 2014, 121:276-288.
[11] ZHANG N L, YANG Q Y. Optimal maintenance planning for repairable multi-component systems subject to dependent competing risks[J]. IIE Transactions, 2015, 47(5): 521-532.
[12] LI H P, DELOUX E, DIEULLE L. A condition-based maintenance policy for multi-component systems with Lévy copulas dependence[J]. Reliability Engineering & System Safety, 2016, 149:44-55.
[13] BÉRENGUER C, GRALL A, DIEULLE L, et al. Maintenance policy for a continuously monitored deteriorating system[J]. Probability in the Engineering and Informational Sciences, 2003, 17(2): 235-250.
[14] MERCIER S, PHAM H H. A preventive maintenance policy for a continuously monitored system with correlated wear indicators[J]. European Journal of Operational Research, 2012, 222(2): 263-272.
[15] CHERUBINI U, LUCIANO E, VECCHIATO W. Copula methods in finance[M]. Oxford, UK: John Wiley & Sons Ltd., 2004: 154-160.
[16] 王浩伟, 徐廷学, 刘勇. 基于随机参数Gamma过程的剩余寿命预测方法[J]. 浙江大学学报(工学版), 2015, 49(4): 699-704.
[16] WANG Haowei, XU Tingxue, LIU Yong. Remaining useful life prediction method based on Gamma processes with random parameters[J]. Journal of Zhejiang University (Engineering Science), 2015, 49(4): 699-704.
[17] KARABOGA D, AKAY B. A comparative study of Artificial Bee Colony algorithm[J]. Applied Mathematics and Computation, 2009, 214(1): 108-132.
[18] KARABOGA D, BASTURK B. A powerful and efficient algorithm for numerical function optimization: Artificial bee colony (ABC) algorithm[J]. Journal of Global Optimization, 2007, 39(3): 459-471.
文章导航

/