可变环境温度下锂离子电池平均温度估计
收稿日期: 2019-08-05
网络出版日期: 2021-07-30
基金资助
国家自然科学基金项目(51677119)
Average Temperature Estimation for Lithium-Ion Batteries at Variable Environment Temperature
Received date: 2019-08-05
Online published: 2021-07-30
锂离子电池的温度变化会极大地影响其使用性能,对锂离子电池进行温度信息采集对热管理系统的开发具有重要意义.为了解决传统温度传感器布置方式所导致的局部温度无法代替整体平均温度的问题,需要在可变环境温度下对10 A·h三元镍钴锰酸锂离子电池开展平均温度估计研究.首先,对锂离子电池进行建模并搭建实验平台,获取建模所需的参数.其次,提出了基于递推最小二乘与拓展卡尔曼滤波算法相结合的锂离子电池平均温度估计方法.最后,为了验证所提出方法的有效性,使用改进混合动力脉冲能力特性(IHPPC)测试工况获取电池在可变环境温度下的实验数据.结果表明:所提方法能够实时估计锂离子电池的平均温度.温度估计模型算法收敛后最大误差为1.8 ℃,平均误差仅为1 ℃.
关键词: 锂离子电池; 时变环境温度; 改进混合动力脉冲能力特性(IHPPC); 平均温度估计
姜余, 陈自强 . 可变环境温度下锂离子电池平均温度估计[J]. 上海交通大学学报, 2021 , 55(7) : 781 -790 . DOI: 10.16183/j.cnki.jsjtu.2019.230
The performance of lithium-ion batteries is greatly affected by the temperature change. Therefore, it is of great significance to get the temperature information to develop the thermal management system. In order to solve the problem that the local temperature caused by the traditional temperature sensor arrangement cannot replace the overall average temperature, it is necessary to conduct studies of average temperature estimation for 10 A·h ternary nicke clobalt manganese lithium-ion batteries at variable environment temperature. First, a lithium-ion battery is modeled and the experimental platform is built to obtain the parameters which are necessary for modeling. Then, an average temperature estimation method for lithium-ion batteries based on recursive least squares and the extended Kalman filter algorithm is proposed. Finally, to verify the effectiveness of the proposed method, the experimental data of the battery at variable environment temperature is obtained under improved hybrid pulse power characteristic (IHPPC). The results show that the proposed method can estimate the average temperature of lithium-ion batteries in real time. The maximum error of the temperature estimation model after the algorithm convergence is 1.8 ℃, and the average error is only 1 ℃.
[1] | 戴国群, 陈性保, 胡晨. 锂离子电池在深潜器上的应用现状及发展趋势[J]. 电源技术, 2015, 39(8): 1768-1772. |
[1] | DAI Guoqun, CHEN Xingbao, HU Chen. Current status and development trend of lithium-ion battery in underwater vehicle[J]. Chinese Journal of Power Sources, 2015, 39(8): 1768-1772. |
[2] | WANG K K, GAO F, ZHU Y L, et al. Internal resistance and heat generation of soft package Li4Ti5O12 battery during charge and discharge[J]. Energy, 2018, 149:364-374. |
[3] | 王腾. 动力电池组分层风冷式热管理系统研究[D]. 北京: 北京理工大学, 2016. |
[3] | WANG Teng. Study on layered air cooling thermal management for lithium-ion battery pack[D]. Beijing: Beijing Institute of Technology, 2016. |
[4] | 孙金磊, 朱春波, 李磊, 等. 电动汽车动力电池温度在线估计方法[J]. 电工技术学报, 2017, 32(7): 197-203. |
[4] | SUN Jinlei, ZHU Chunbo, LI Lei, et al. Online temperature estimation method for electric vehicle power battery[J]. Transactions of China Electrotechnical Society, 2017, 32(7): 197-203. |
[5] | XIONG R, HE H W, SUN F C, et al. Evaluation on state of charge estimation of batteries with adaptive extended Kalman filter by experiment approach[J]. IEEE Transactions on Vehicular Technology, 2013, 62(1): 108-117. |
[6] | ANSARI F, YUAN L B. Mechanics of bond and interface shear transfer in optical fiber sensors[J]. Journal of Engineering Mechanics, 1998, 124(4): 385-394. |
[7] | 李斌, 常国峰, 林春景, 等. 车用动力锂电池产热机理研究现状[J]. 电源技术, 2014, 38(2): 378-381. |
[7] | LI Bin, CHANG Guofeng, LIN Chunjing, et al. Research on heat generate mechanism of Li-ion batteries for electric vehicles[J]. Chinese Journal of Power Sources, 2014, 38(2): 378-381. |
[8] | 赵学娟. 锂离子电池在绝热条件下的循环产热研究[D]. 合肥: 中国科学技术大学, 2014. |
[8] | ZHAO Xuejuan. Heat generation of lithium ion battery during cycling under adiabatic condition[D]. Hefei: University of Science and Technology of China, 2014. |
[9] | 罗宗鸿. 电动汽车电池热特性及电池组风冷散热研究[D]. 南昌: 南昌航空大学, 2018. |
[9] | LUO Zonghong. Research on battery thermal characteristics and air cooling heat dissipation of battery packs for electric vehicles[D]. Nanchang: Nanchang Hangkong University, 2018. |
[10] | 黄德扬, 陈自强, 郑昌文. 时变温度环境下锂离子电池自适应SOC估计方法[J]. 装备环境工程, 2018, 15(12): 28-34. |
[10] | HUANG Deyang, CHEN Ziqiang, ZHENG Changwen. SOC adaptive estimation method for Li-ion ba-ttery applied in temperature-varying condition[J]. Equipment Environmental Engineering, 2018, 15(12): 28-34. |
[11] | 姜余, 陈自强. 锂离子电池热特性参数测量方法研究[J]. 装备环境工程, 2018, 15(12): 60-64. |
[11] | JIANG Yu, CHEN Ziqiang. Measurement methods for thermal characteristic parameters of lithium-ion battery[J]. Equipment Environmental Engineering, 2018, 15(12): 60-64. |
[12] | BERNARDI D, PAWLIKOWSKI E, NEWMAN J. A general energy balance for battery systems[J]. Journal of the Electrochemical Society, 1985, 132(1): 5-12. |
[13] | EDDAHECH A, BRIAT O, VINASSA J M. Thermal characterization of a high-power lithium-ion battery: Potentiometric and calorimetric measurement of entropy changes[J]. Energy, 2013, 61:432-439. |
[14] | 王康康, 高飞, 杨凯, 等. 不同健康状态等级的储能磷酸铁锂电池熵变系数及放电产热研究[J]. 高电压技术, 2017, 43(7): 2241-2248. |
[14] | WANG Kangkang, GAO Fei, YANG Kai, et al. Research of LiFePO4/C energy storage batteriesê entropy coefficient and discharge heat generation based on the state of health[J]. High Voltage Engineering, 2017, 43(7): 2241-2248. |
[15] | 赵奕凡. 电动汽车锂离子动力电池状态估算方法研究[D]. 武汉: 武汉理工大学, 2014. |
[15] | ZHAO Yifan. Research on state estimation method of lithium ion power battery for electric vehicles[D]. Wuhan: Wuhan University of Technology, 2014. |
/
〈 |
|
〉 |