基于变密度法的结构强度拓扑优化策略

展开
  • 上海交通大学 机械与动力工程学院, 上海 200240
丁卯(1993-),男,江苏省扬州市人,硕士生,主要从事结构拓扑优化方法及其应用.

收稿日期: 2019-10-22

  网络出版日期: 2021-06-30

基金资助

国家自然科学基金项目资助(51705311)

Topology Optimization Strategy of Structural Strength Based on Variable Density Method

Expand
  • School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China

Received date: 2019-10-22

  Online published: 2021-06-30

摘要

基于变密度法的结构强度拓扑优化中,优化结果存在灰度单元,导致结构应力水平难以准确预测,后处理前后结构应力水平变化较大.该研究通过采用基于过滤-投影的结构参数化方法,实现在迭代优化过程中结构中间密度单元比例不断下降.通过研究结构比强度问题主要优化参数对寻优过程、优化结构强度的影响规律,提出了先结构拓扑优化、后近似形状优化的新优化策略.实现了在优化过程中对结构应力水平变化趋势的准确控制,在提升优化过程稳定性的同时,实现了结构强度优化.通过典型的优化算例验证了所提出优化方法的合理性及实用性.

本文引用格式

丁卯, 耿达, 周明东, 来新民 . 基于变密度法的结构强度拓扑优化策略[J]. 上海交通大学学报, 2021 , 55(6) : 764 -773 . DOI: 10.16183/j.cnki.jsjtu.2019.301

Abstract

In structural strength topology optimization based on the variable density method, there are gray cells in the optimization result, making it difficult to accurately predict the structural stress which changes greatly before and after post-processing. This paper uses a filter-projection-based structural parameterization method to achieve a continuous decrease in the proportion of structural intermediate density units during the iterative optimization process. By studying the influence of the main optimization parameters of the structural ratio strength problem on the optimization process and structural strength optimization, a novel optimization strategy of structural topology optimization followed by approximate shape optimization is proposed, which realizes the accurate control of the change of structural stress during the optimization process, achieveing structural strength optimization while improving the stability of the optimization process. Typical optimization examples verify the rationality and practicability of the proposed optimization method.

参考文献

[1] WITHEY P A. Fatigue failure of the de Havilland comet I[J]. Engineering Failure Analysis, 1997, 4(2):147-154.
[2] 孟庆轩, 徐斌, 王超. 基于应力约束的热固耦合连续体结构拓扑优化[C]// 中国力学学会, 浙江大学.中国力学大会论文集(CCTAM 2019).杭州: 中国力学学会, 浙江大学, 2019: 3311-3316.
[2] MENG Qingxuan, XU Bin, Wang Chao. Stress-constrained thermal-mechanical coupling topology optimization of continuous structures[C]// The Chinese Congress of Theoretical and Applied Mechanics, Zhejiang University. The Chinese Congress of Theoretical and Applied Mechanics (CCTAM 2019) . Hangzhou: Chinese Society of Theoretical and Applied Mechanics, Zhejiang University, 2019: 3311-3316.
[3] 王选, 刘宏亮, 龙凯, 等. 基于改进的双向渐进结构优化法的应力约束拓扑优化[J]. 力学学报, 2018, 50(2):385-394.
[3] WANG Xuan, LIU Hongliang, LONG Kai, et al. Stress-constrained topology optimization based on improved bi-directional evolutionary optimization method[J]. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(2):385-394.
[4] ZHANG S L, GAIN A L, NORATO J A. Stress-based topology optimization with discrete geometric components[J]. Computer Methods in Applied Mechanics and Engineering, 2017, 325:1-21.
[5] VERBART A, LANGELAAR M, KEULEN F V. A unified aggregation and relaxation approach for stress-constrained topology optimization[J]. Structural and Multidisciplinary Optimization, 2017, 55(2):663-679.
[6] DEATON J D, GRANDHI R V. Stress-based design of thermal structures via topology optimization[J]. Structural and Multidisciplinary Optimization, 2016, 53(2):253-270.
[7] 张晓鹏, 康柯, 杨东生. 基于相场描述的拉压不对称强度结构拓扑优化[J/OL]. (2019-12-12) [2020-3-31]. http://kns.cnki.net/kcms/detail/21.1373.O3.20191227.1104.004.html .
[7] ZHANG Xiaopeng, KANG Ke, YANG Dongsheng. Phase-field based topology optimization with Drucker-Prager yield stress constraints[J/OL]. (2019-12-12) [2020-3-31]. http://kns.cnki.net/kcms/detail/21.1373.O3.20191227.1104.004.html .
[8] LE C, NORATO J, BRUNS T, et al. Stress-based topology optimization for continua[J]. Structural and Multidisciplinary Optimization, 2010, 41(4):605-620.
[9] ZHOU M D, SIGMUND O. On fully stressed design and p-norm measures in structural optimization[J]. Structural and Multidisciplinary Optimization, 2017, 56(3):731-736.
[10] PICELLI R, TOWNSEND S, BRAMPTON C, et al. Stress-based shape and topology optimization with the level set method[J]. Computer Methods in Applied Mechanics and Engineering, 2018, 329:1-23.
[11] LIAN H J, CHRISTIANSEN A N, TORTORELLI D A, et al. Combined shape and topology optimization for minimization of maximal von Mises stress[J]. Structural and Multidisciplinary Optimization, 2017, 55(5):1541-1557.
[12] LAZAROV B S, WANG F W, SIGMUND O. Length scale and manufacturability in density-based topology optimization[J]. Archive of Applied Mechanics, 2016, 86(1/2):189-218.
[13] DA SILVA G A, CARDOSO E L. Stress-based topology optimization of continuum structures under uncertainties[J]. Computer Methods in Applied Mechanics and Engineering, 2017, 313:647-672.
[14] COLLET M, NOËL L, BRUGGI M, et al. Topology optimization for microstructural design under stress constraints[J]. Structural and Multidisciplinary Optimization, 2018, 58(6):2677-2695.
[15] POLLINI N, AMIR O. Mixed projection- and density-based topology optimization with applications to structural assemblies[J]. Structural and Multidisciplinary Optimization, 2020, 61(2):687-710.
[16] SVANBERG K. The method of moving asymptotes: A new method for structural optimization[J]. International Journal for Numerical Methods in Engineering, 1987, 24(2):359-373.
文章导航

/