基于Newmark隐式时间积分方案的裂纹动态扩展的数值计算方法
收稿日期: 2020-01-14
网络出版日期: 2021-06-30
基金资助
国家自然科学基金重点项目(51679017);国家自然科学基金重点项目(51839009)
Numerical Calculation Method for Crack Dynamic Propagation Based on Newmark Implicit Time Integration Scheme
Received date: 2020-01-14
Online published: 2021-06-30
扩展有限单元法(XFEM)是基于单位分解的思想,在常规有限元的位移模式中加入能够反映裂纹面不连续性的跳跃函数和裂纹尖端的渐近位移场函数,避免了常规有限单元法计算断裂问题时需要对裂纹尖端重新划分网格的不便以及繁重的计算量,并且裂纹的扩展独立于网格.标准有限元在处理时间积分时,在裂纹不断扩展的过程中整体刚度矩阵的自由度也会不断地增大,从而导致迭代计算无法进行.本文基于扩展有限单元法模拟动态裂纹扩展的方法,提出了新的Newmark隐式时间积分方案.此方法将所有节点都富集Heaviside函数和裂纹尖端的渐近位移场函数,即每个节点都有12个自由度,从而使得总体刚度矩阵式保持一致,避免迭代计算无法进行.同时,提出了一种稀疏矩阵技术来解决矩阵所占内存大和计算时间长的问题.
关键词: 扩展有限元; 动态裂纹; Newmark隐式时间积分; 稀疏矩阵技术
郭德平, 李铮, 彭森林, 曾志凯, 吴岱峰 . 基于Newmark隐式时间积分方案的裂纹动态扩展的数值计算方法[J]. 上海交通大学学报, 2021 , 55(6) : 689 -697 . DOI: 10.16183/j.cnki.jsjtu.2020.021
Extended finite element method (XFEM) is based on the idea of unit decomposition. The jump function that can reflect the discontinuity of the crack surface and the progressive displacement field function of the crack tip is added to the conventional finite element displacement mode, which avoids the inconvenience of remeshing the crack tip and the heavy calculation. Then the conventional finite element method calculates the fracture problem, and the crack propagation is independent of the mesh. When the standard finite element deals with time integration, the degree of freedom of the overall stiffness matrix will continue to increase in the process of crack propagation, which makes iterative calculation impossible. This paper proposes a novel Newmark implicit time integration scheme based on the XFEM to simulate dynamic crack growth. This method enriches all the nodes with the Heaviside function and the asymptotic displacement field function at the crack tip, that is, each node has 12 degrees of freedom, so that the overall stiffness matrix is consistent without making iterative calculation impossible. At the same time, a sparse matrix technology is proposed to solve the problems of large memory and long calculation time occupied by the matrix.
[1] | SHEN J H, WHEELER C, ILIC D, et al. Application of open source FEM and DEM simulations for dynamic belt deflection modelling[J]. Powder Technology, 2019, 357:171-185. |
[2] | ELGUEDJ T, JAN Y, COMBESCURE A, et al. X-FEM Analysis of dynamic crack growth under transient loading in thick shells[J]. International Journal of Impact Engineering, 2018, 122:228-250. |
[3] | SHARMA V, FUJISAWA K, MURAKAMI A. Space-time FEM with block-iterative algorithm for nonlinear dynamic fracture analysis of concrete gravity dam[J]. Soil Dynamics and Earthquake Engineering, 2020, 131:105995. |
[4] | SUN J S, LEE K H, LEE H P. Comparison of implicit and explicit finite element methods for dynamic problems[J]. Journal of Materials Processing Technology, 2000, 105(1/2):110-118. |
[5] | NILSSON K, LIDSTRÖM P. Simulation of ductile fracture of slabs subjected to dynamic loading using cohesive elements[J]. International Journal of Da-mage Mechanics, 2012, 21(6):871-892. |
[6] | BELYTSCHKO T, BLACK T. Elastic crack growth in finite elements with minimal remeshing[J]. International Journal for Numerical Methods in Engineering, 1999, 45(5):601-620. |
[7] | ZHOU X P, ZHANG J Z, BERTO F. Fracture ana-lysis in brittle sandstone by digital imaging and AE techniques: Role of flaw length ratio[J]. Journal of Materials in Civil Engineering, 2020, 32(5):04020085. |
[8] | ZHOU X P, CHENG H. Multidimensional space method for geometrically nonlinear problems under total Lagrangian formulation based on the extended finite-element method[J]. Journal of Engineering Mechanics, 2017, 143(7):04017036. |
[9] | CHEN J W, ZHOU X P. The enhanced extended finite element method for the propagation of complex branched cracks[J]. Engineering Analysis With Boundary Elements, 2019, 104:46-62. |
[10] | STOLARSKA M, CHOPP D L, MOËS N, et al. Modelling crack growth by level sets in the extended finite element method[J]. International Journal for Numerical Methods in Engineering, 2001, 51(8):943-960. |
[11] | ZHOU X P, CHEN J W. Extended finite element simulation of step-path brittle failure in rock slopes with non-persistent en-echelon joints[J]. Engineering Geology, 2019, 250:65-88. |
[12] | CHEN J W, ZHOU X P, BERTO F. The improvement of crack propagation modelling in triangular 2D structures using the extended finite element method[J]. Fatigue & Fracture of Engineering Materials & Structures, 2019, 42(2):397-414. |
[13] | 黄宏伟, 刘德军, 薛亚东, 等. 基于扩展有限元的隧道衬砌裂缝开裂数值分析[J]. 岩土工程学报, 2013, 35(2):266-275. |
[13] | HUANG Hongwei, LIU Dejun, XUE Yadong, et al. Numerical analysis of cracking of tunnel linings based on extended finite element[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(2):266-275. |
[14] | 阮滨, 陈国兴, 王志华. 基于扩展有限元法的均质土坝裂纹模拟[J]. 岩土工程学报, 2013, 35(Sup.2):49-54. |
[14] | RUAN Bin, CHEN Guoxing, WANG Zhihua. Numerical simulation of cracks of homogeneous earth dams using an extended finite element method[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(Sup.2):49-54. |
[15] | MENOUILLARD T, BELYTSCHKO T. Dynamic fracture with meshfree enriched XFEM[J]. Acta Mechanica, 2010, 213(1/2):53-69. |
[16] | WEN L F, TIAN R. Improved XFEM: Accurate and robust dynamic crack growth simulation[J]. Compu-ter Methods in Applied Mechanics and Engineering, 2016, 308:256-285. |
[17] | ZHOU X P, ZHANG J Z, QIAN Q H, et al. Expe-rimental investigation of progressive cracking processes in granite under uniaxial loading using digital imaging and AE techniques[J]. Journal of Structural Geology, 2019, 126:129-145. |
[18] | WANG Y T, ZHOU X P, XU X. Numerical simulation of propagation and coalescence of flaws in rock materials under compressive loads using the extended non-ordinary state-based peridynamics[J]. Engineering Fracture Mechanics, 2016, 163:248-273. |
[19] | WU Z J, FAN L F, LIU Q S, et al. Micro-mechanical modeling of the macro-mechanical response and fracture behavior of rock using the numerical manifold method[J]. Engineering Geology, 2017, 225:49-60. |
[20] | CHEN S, HANSEN J M, TORTORELLI D A. Unconditionally energy stable implicit time integration: Application to multibody system analysis and design[J]. International Journal for Numerical Methods in Engineering, 2000, 48(6):791-822. |
[21] | WANG J R, WU J C, WANG D D. A quasi-consis-tent integration method for efficient meshfree analysis of Helmholtz problems with plane wave basis functions[J]. Engineering Analysis With Boundary Elements, 2020, 110:42-55. |
[22] | WANG D D, WU J C. An inherently consistent reproducing kernel gradient smoothing framework toward efficient Galerkin meshfree formulation with explicit quadrature[J]. Computer Methods in Applied Mechanics and Engineering, 2019, 349:628-672. |
[23] | WANG D D, WANG J R, WU J C, et al. A three-dimensional two-level gradient smoothing meshfree method for rainfall induced landslide simulations[J]. Frontiers of Structural and Civil Engineering, 2019, 13(2):337-352. |
/
〈 |
|
〉 |