基于非局部Biot理论的平面波作用下饱和地基动力响应

展开
  • 1.华东交通大学 江西省岩土工程基础设施安全与控制重点实验室,南昌 330013
    2.江西省地下空间技术开发工程中心,南昌 330013
王宁(1983-),男,山东省东营市人,讲师,主要从事基础动力学与土动力学及动力检测技术应用等研究

收稿日期: 2020-05-22

  网络出版日期: 2021-06-30

基金资助

研究生创新基金(YC2019-B105);国家自然科学基金地区基金(51868021);国家自然科学基金青年基金(11702095);国家杰出青年基金(51725802);高铁联合基金(U1934208);江西省自然科学基金(20192BAB216031);江西省教育厅自然科学基金(GJJ190300)

Dynamic Responses of Saturated Soil Foundation Subjected to Plane Wave Based on Nonlocal-Biot Theory

Expand
  • 1. Jiangxi Key Laboratory of Infrastructure Safety Control in Geotechnical Engineering, East China Jiaotong University, Nanchang 330013, China
    2. Engineering Research and Development Centre for Underground Technology of Jiangxi Province, Nanchang 330013, China

Received date: 2020-05-22

  Online published: 2021-06-30

摘要

为探究孔隙尺寸效应对饱和土地基动力响应的影响,基于非局部-Biot理论,构建了P波及SV波作用下饱和土地基表面动力响应的计算模型.采用波函数展开法,求解了地表位移及应力的解析解.分析了孔隙尺寸(以非局部参数描述)、入射波频率及入射角对地表位移及应力响应的影响.结果表明:低频下,非局部Biot理论计算结果与经典Biot理论计算结果基本一致;高频时,地表位移及应力随非局部参数变化较为明显,即高频率下,孔隙尺寸效应对地表响应影响不可忽略.入射波频率对地表响应的影响与孔隙尺寸有关,孔隙越大,频率影响越为显著.相同幅值的P波及SV波作用下,SV波引起的地表动力响应大于P波,且SV波在入射角为45° 时发生全反射.研究成果可为半空间饱和土中波动问题的研究提供借鉴.

本文引用格式

王宁, 丁海滨, 童立红, 蒋亚龙 . 基于非局部Biot理论的平面波作用下饱和地基动力响应[J]. 上海交通大学学报, 2021 , 55(6) : 663 -671 . DOI: 10.16183/j.cnki.jsjtu.2020.149

Abstract

To investigate the influence of pore size effect on dynamic response of saturated soil foundation, a model for predicting the dynamic response of the ground surface of the saturated soil foundation under incident P wave and SV wave is proposed based on the nonlocal-Biot theory. The analytical solution is obtained using the wave function expansion method. The influence of pore size described by nonlocal parameter, input frequency, and the incident angle on the dynamic response of displacement and stress is discussed in detail. The results show that at low frequencies, the calculation results of the nonlocal-Biot theory are basically the same as those of the classical Biot theory. At high frequencies, the surface displacement and stress change significantly with nonlocal parameters, that is, at high frequencies, the effect of pore size on the surface response cannot be ignored. The influence of incident wave frequency on the ground-surface response is related to pore size, that is, the larger the pore size, the more significant the frequency effect. The influence of SV wave on the dynamic response of ground surface is larger than that of P wave. Besides, the total reflection phenomenon is observed at an incident angle of 45° for the incident of SV wave. The results obtained in this work can provide reference for studying the problem of wave propagation in half-space saturated soil foundation.

参考文献

[1] 张奎, 李伟华, 赵成刚. 平面波入射下深水地基场地动力响应分析[J]. 岩土工程学报, 2018, 40(6):1066-1074.
[1] ZHANG Kui, LI Weihua, ZHAO Chenggang. Dynamic responses of an underwater site subjected to plane P- or SV-wave incidence[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(6):1066-1074.
[2] YANG J. Saturation effects on horizontal and vertical motions in a layered soil-bedrock system due to inclined SV waves[J]. Soil Dynamics and Earthquake Engineering, 2001, 21(6):527-536.
[3] LIN C H. Wave propagation in a poroelastic half-space saturated with inviscid fluid [D]. Los Angeles, America: University of Southern California, 2002.
[4] BIOT M A. Mechanics of deformation and acoustic propagation in porous media[J]. Journal of Applied Physics, 1962, 33(4):1482-1498.
[5] LOPATNIKOV S. Macroscopic Lagrangian formulation of poroelasticity with porosity dynamics[J]. Journal of the Mechanics and Physics of Solids, 2004, 52(12):2801-2839.
[6] PAPARGYRI-BESKOU S, POLYZOS D, BESKOS D E. Wave propagation in 3-D poroelastic media including gradient effects[J]. Archive of Applied Mechanics, 2012, 82(10/11):1569-1584.
[7] PAPARGYRI-BESKOU S, TSINOPOULOS S V, BESKOS D E. Transient dynamic analysis of a fluid-saturated porous gradient elastic column[J]. Acta Mechanica, 2011, 222(3/4):351-362.
[8] SMYRLIS V D, PEGIOS I P, PAPARGYRI-BESKOU S. On wave propagation in gradient poroelasticity[J]. Soil Dynamics and Earthquake Engineering, 2016, 88:72-75.
[9] BOUZIDI Y, SCHMITT D R. Measurement of the speed and attenuation of the Biot slow wave using a large ultrasonic transmitter[J]. Journal of Geophysical Research: Solid Earth, 2009, 114(B8):1-14.
[10] LEE K I, HUMPHREY V F, KIM B N, et al. Frequency dependencies of phase velocity and attenuation coefficient in a water-saturated sandy sediment from 0.3 to 1.0 MHz[J]. The Journal of the Acoustical Society of America, 2007, 121(5):2553-2558.
[11] CHAKRABORTY A. Prediction of negative dispersion by a nonlocal poroelastic theory[J]. The Journal of the Acoustical Society of America, 2008, 123(1):56-67.
[12] ERINGEN A C. On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves[J]. Journal of Applied Physics, 1983, 54(9):4703-4710.
[13] TONG L H, YU Y, HU W T, et al. On wave propagation characteristics in fluid saturated porous materials by a nonlocal Biot theory[J]. Journal of Sound and Vibration, 2016, 379:106-118.
[14] 徐长节, 丁海滨, 童立红, 等. 基于非局部Biot理论下饱和土中深埋圆柱形衬砌对平面弹性波的散射[J]. 岩土工程学报, 2018, 40(9):1563-1570.
[14] XU Changjie, DING Haibin, TONG Lihong, et al. Scattering wave generated by the cylindrical lining in saturated soil based on the nonlocal-Biot theory[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(09):1563-1570.
[15] XU C J, DING H B, TONG L H, et al. Scattering of a plane wave by shallow buried cylindrical lining in a poroelastic half-space[J]. Applied Mathematical Modelling, 2019, 70:171-189.
[16] DING H B, TONG L H, XU C J, et al. Dynamic responses of shallow buried composite cylindrical lining embedded in saturated soil under incident P wave based on nonlocal-Biot theory[J]. Soil Dynamics and Earthquake Engineering, 2019, 121:40-56.
[17] TONG L H, LAI S K, ZENG L L, et al. Nonlocal scale effect on Rayleigh wave propagation in porous fluid-saturated materials[J]. International Journal of Mechanical Sciences, 2018, 148:459-466.
[18] BIOT M A. Theory of propagation of elastic waves in a fluid-saturated porous solid. II. Higher frequency range[J]. The Journal of the Acoustical Society of America, 1956, 28(2):179-191.
[19] KNOPOFF L, FREDRICKS R W, GANGI A F, et al. Surface amplitudes of reflected body waves[J]. Geophysics, 1957, 22(4):842-847.
文章导航

/