考虑动态流体网格的颗粒-流体耦合算法

展开
  • 上海交通大学 土木工程系, 上海 200240
何金辉(1995-),男,河南省洛阳市人,硕士生,从事岩土流固耦合方面研究

收稿日期: 2020-09-30

  网络出版日期: 2021-06-30

基金资助

国家自然科学基金面上项目(41977216);国家自然科学基金面上项目(51978399);上海市科委项目(BI0100054)

Particle-Fluid Coupling Algorithm Considering Dynamic Fluid Mesh

Expand
  • Department of Civil Engineering, Shanghai Jiao Tong University, Shanghai 200240, China

Received date: 2020-09-30

  Online published: 2021-06-30

摘要

传统颗粒-流体耦合算法难以考虑流体动态边界问题,在模拟大变形案例时因流固边界不匹配易造成计算误差,影响结果的准确性.针对该问题,引入流体网格动态更新方法,推导动网格下的达西渗流方程和颗粒-流体相互作用方程,在离散元商业软件PFC2D基础上,开发了考虑流体动网格的颗粒-流体耦合算法.将该算法用于模拟饱和土不排水剪切双轴试验,通过与常体积法的结果对比,验证了该方法的有效性.最后,采用该算法模拟了不同围压下的不排水双轴试验,计算结果的规律与室内试验具有较好的一致性.该算法考虑了流体动网格的问题,在模拟大变形下的三轴压缩试验、一维固结试验等案例时可获得相适应的流固边界,有助于提高模拟精度,因此可为类似研究提供参考.

本文引用格式

何金辉, 李明广, 陈锦剑, 夏小和 . 考虑动态流体网格的颗粒-流体耦合算法[J]. 上海交通大学学报, 2021 , 55(6) : 645 -651 . DOI: 10.16183/j.cnki.jsjtu.2020.317

Abstract

It is generally difficult to consider the fluid dynamic boundary problem in the traditional particle-fluid coupling algorithm, causing calculation errors owing to the mismatching of the fluid-solid boundary and affecting the accuracy of the results in the modeling of large deformation issues. In view of this problem, the dynamic updating method of fluid mesh is introduced and Darcy’s seepage equation and the particle-fluid interaction equation in dynamic mesh are derived. Based on the discrete element commercial software PFC2D, the particle-fluid coupling algorithm considering dynamic fluid mesh is developed. The proposed algorithm is applied to simulate the undrained shear biaxial test of saturated soil. The comparison result with the constant volume method verifies the effectiveness of the developed algorithm. Finally, the algorithm is used to simulate the undrained biaxial tests at different confining pressures. The law of the calculated results agrees well with that of the laboratory tests. By considering the problem of fluid dynamic boundary, the developed algorithm can obtain the fluid-solid boundary matching in the simulation of triaxial compression test and one-dimensional consolidation test or other cases in large deformations, which can help to improve the simulation accuracy and offer a theoretical reference for similar studies.

参考文献

[1] 蒋明镜, 张望城. 一种考虑流体状态方程的土体CFD-DEM耦合数值方法[J]. 岩土工程学报, 2014, 36(5):793-801.
[1] JIANG Mingjing, ZHANG Wangcheng. Coupled CFD-DEM method for soils incorporating equation of state for liquid[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(5):793-801.
[2] 刘广, 荣冠, 侯迪, 等. 颗粒-流体耦合算法与饱和土不排水剪切特性研究[J]. 岩土力学, 2016, 37(1):210-218.
[2] LIU Guang, RONG Guan, HOU Di, et al. Fluid-particle coupled model and a numerical investigation on undrained shear behavior of saturated soil[J]. Rock and Soil Mechanics, 2016, 37(1):210-218.
[3] ZHANG Z L, SHAO Z S, FANG X B, et al. Research on the fracture grouting mechanism and PFC numerical simulation in loess[J]. Advances in Materials Science and Engineering, 2018, 2018:1-7.
[4] ZENG Y W, XIA L. Numerical simulation of hydraulic fracturing in transversely isotropic rock masses based on PFC-2D[J]. Journal of Vibroengineering, 2019, 21(4):833-847.
[5] WANG Y, DONG Q, CHEN Y. Seepage simulation using pipe network flow model in a discrete element system[J]. Computers and Geotechnics, 2017, 92:201-209.
[6] 王学红. 高频液压振动锤沉桩机理的颗粒离散元模拟[D]. 福州: 福州大学, 2011.
[6] WANG Xuehong. Discrete element modelling of mechanisms of high frequency hydraulic vibratory pile driving[D]. Fuzhou: Fuzhou University, 2011.
[7] ZEGHAL M, EL SHAMY U. A continuum-discrete hydromechanical analysis of granular deposit liquefaction[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2004, 28(14):1361-1383.
[8] TAO H, TAO J. Quantitative analysis of piping erosion micro-mechanisms with coupled CFD and DEM method[J]. Acta Geotechnica, 2017, 12(3):573-592.
[9] ZHANG A, JIANG M, THORNTON C. A coupled CFD-DEM method with moving mesh for simulating undrained triaxial tests on granular soils[J]. Granular Matter, 2020, 22(1):1-13.
[10] ZHANG F, WANG T, LIU F, et al. Modeling of fluid-particle interaction by coupling the discrete element method with a dynamic fluid mesh: Implications to suffusion in gap-graded soils[J]. Computers and Geotechnics, 2020, 124:103617.
[11] SHAFIPOUR R, SOROUSH A. Fluid coupled-DEM modelling of undrained behavior of granular media[J]. Computers and Geotechnics, 2008, 35(5):673-685.
[12] LIU G, RONG G, PENG J, et al. Numerical simulation on undrained triaxial behavior of saturated soil by a fluid coupled-DEM model[J]. Engineering Geology, 2015, 193:256-266.
[13] KHALILI Y, MAHBOUBI A. Discrete simulation and micromechanical analysis of two-dimensional sa-turated granular media[J]. Particuology, 2014, 15:138-150.
[14] OKADA Y, OCHIAI H. Coupling pore-water pre-ssure with distinct element method and steady state strengths in numerical triaxial compression tests under undrained conditions[J]. Landslides, 2007, 4(4):357-369.
[15] KEISHING J, HANLEY K J. Improving constant-volume simulations of undrained behaviour in DEM[J]. Acta Geotechnica, 2020, 15(9):2545-2558.
文章导航

/