模拟碱骨料反应引起的箍筋端部锚固退化对钢筋混凝土梁受剪性能的影响

展开
  • 厦门大学 建筑与土木工程学院, 福建 厦门 361005
赵朋飞(1996-),男,安徽省蚌埠市人,硕士生,主要从事环境因子引起的钢筋混凝土结构的材料劣化研究

收稿日期: 2020-04-01

  网络出版日期: 2021-06-08

基金资助

福建省自然科学基金面上项目(2018J01086);厦门市交通基础设施智能管养工程技术研究中心开放基金资助项目(TCIMI201804);国家重点研发计划(2016YFC0701106)

Simulation of Influence of End Anchorage Degradation of Stirrups Caused by Alkali Aggregate Reaction on Shear Performance of Reinforced Concrete Beams

Expand
  • School of Architecture and Civil Engineering, Xiamen University, Xiamen 361005, Fujian, China

Received date: 2020-04-01

  Online published: 2021-06-08

摘要

采用人工方法模拟碱骨料反应(AAR)引起的箍筋下端锚固退化,通过三点加载实验和数值模拟对钢筋混凝土(RC)梁受剪性能展开研究.结果表明:和完好梁相比,剪跨区内箍筋下端锚固退化降低了RC梁的受剪承载力,且降低程度随局部黏结失效范围的增大而趋于明显.端部锚固退化导致的箍筋抗剪作用减小以及斜裂缝间骨料咬合承担剪力降低是承载力下降的主要原因.基于模拟箍筋应变的承载机制定量评价结果表明,箍筋下端锚固退化同时降低了混凝土承担剪力Vc以及箍筋承担剪力Vs,但Vs降幅较Vc更为显著.

本文引用格式

赵朋飞, 薛昕, 杨成 . 模拟碱骨料反应引起的箍筋端部锚固退化对钢筋混凝土梁受剪性能的影响[J]. 上海交通大学学报, 2021 , 55(6) : 681 -688 . DOI: 10.16183/j.cnki.jsjtu.2020.094

Abstract

This paper conducted a three-point loading experiment and analytical investigations on the shear performance of reinforced concrete (RC) beams with anchor defect at the lower end of stirrups. In the experiment, artificial methods were used to simulate the anchor degradation of the lower end of the stirrup caused by the alkali-aggregate reaction (AAR). The results show that, compared with the sound beams, the anchorage degradation of stirrups reduces the shear capacity of RC beams, and the degree of reduction becomes more pronounced with the increase of the local bond degradation area. The decrease in shear capacity is thought to be attributed to the reduction of the shear contribution by the stirrups and the reduction of the shear resistance by interlock action of coarse aggregate between diagonal cracks. The quantitative evaluation of shear contribution based on the computed stirrup strains confirms that the anchorage defect at the lower end of the stirrup reduces both the shear contribution Vc by concrete and Vs by stirrups, and the reduction of Vs is more significant than Vc.

参考文献

[1] 温海锋, 张海波. 碱骨料反应及辅助胶凝材料对其抑制机理的研究综述[J]. 硅酸盐通报, 2019, 38(6):1782-1787.
[1] WEN Haifeng, ZHANG Haibo. Review of alkali-aggregate reaction and supplementary cementious materials (SCMs) on its inhibition mechanism[J]. Bulletin of the Chinese Ceramic Society, 2019, 38(6):1782-1787.
[2] 徐小伟, 唐红平. 巴基斯坦卡洛特水电工程混凝土碱骨料反应研究[J]. 人民长江, 2018, 49(A02):154-156.
[2] XU Xiaowei, TANG Hongping. Study on concrete alkali aggregate reaction for Karot Hydropower Station, Pakistan[J]. Yangtze River, 2018, 49(A02):154-156.
[3] 宋百姓, 柯国军, 潘坚文. 混凝土碱骨料反应及力学性能细观模拟[J]. 工程力学, 2017, 34(4):134-139.
[3] SONG Baixing, KE Guojun, PAN Jianwen. Meso-scale particle modeling of alkali-silica reaction and mechanical properties of concrete[J]. Engineering Mechanics, 2017, 34(4):134-139.
[4] SAOUMA V E, HARIRI-ARDEBILI M A, LE PAPE Y, et al. Effect of alkali-silica reaction on the shear strength of reinforced concrete structural members. A numerical and statistical study[J]. Nuclear Engineering and Design, 2016, 310:295-310.
[5] WEBB Z D. Experimental investigation of ASR/DEF-induced reinforcing bar fracture[D]. Austin, United States: The University of Texas at Austin, 2011.
[6] KARTHIK M M, MANDER J B, HURLEBAUS S. Deterioration data of a large-scale reinforced concrete specimen with severe ASR/DEF deterioration[J]. Construction and Building Materials, 2016, 124:20-30.
[7] 王惊旻. 由ASR引起的箍筋断裂试验研究[D]. 扬州: 扬州大学, 2014.
[7] WANG Jingmin. Evaluation of stirrup fractures due to experimental simulations of ASR[D]. Yangzhou: Yangzhou University, 2014.
[8] UEHARA N. Rebar damage and internal degradation of concrete due to alkali-aggregate reaction[D]. Kyushu, Japan: Kyushu Institute of Technology, 2016.
[9] MIYAGAWA T. Fracture of reinforcing steels in concrete damaged by ASR[J]. Construction and Building Materials, 2013, 39:105-112.
[10] MEGAWA K, NAKAMURA E, SATO Y. Shear behavior of RC beam with unbond regeon and decreased bond strength in stirrups[J]. Proceedings of the Japan Concrete Institute, 2004, 26(2):973-978.
[11] ABE H, SAITO S, HIGAI T. Investigation on shear failure of RC beams arranging reinforcement with inadequate anchorage[J]. Proceeding of Japan Concrete Institute, 2005, 27(2):337-342.
[12] HORDIJK D A. Local approach to fatigue of concrete[D]. Doctoral Dissertation: Delft University of Technology, 1991.
[13] HENDRIKS M, DE BOER A, BELLETTI B, Guidelines for nonlinear finite element analysis of concrete structures[J]. Rijkswaterstaat Centre for Infrastructure, 2017,Report RTD: 1016-1:2017.
[14] DÖRR K. Ein beitrag zur berechnung von stahlbetonscheiben unter besonderer berücksichtigung des verbundverhaltens[D]. Hesse-Darmstadt: University of Darmstadt, 1980.
[15] XUE X, SEKI H, SONG Y. Shear behavior of RC beams containing corroded stirrups[J]. Advances in Structural Engineering, 2014, 17(2):165-177.
[16] ROTS J G, NAUTA P, KUSTER G M A, et al. Smeared crack approach and fracture localization in concrete[J]. Heron, 1985(1):1512-1533.
[17] ACI-ASCE Committee. The shear strength of reinforced concrete members[J]. Journal of the Structural Division, 1973, 99(ST6):1148-1157.
文章导航

/