PandaX-4T超高纯氙去除氪低温精馏系统运行分析
收稿日期: 2020-06-15
网络出版日期: 2021-06-08
基金资助
国家重点研发计划(2016YFA0400301);上海市科学技术委员会重点基础研究项目(18JC1410200)
Operation Analysis of PandaX-4T Ultra-High Purity Xenon Cryogenic Distillation System for Removal of Krypton
Received date: 2020-06-15
Online published: 2021-06-08
PandaX-4T实验组通过McCabe-Thiele(M-T)方法及质量、能量守恒,设计研制出将商业氙中氪的摩尔分数由5×10-7降低至1×10-14的高效低温精馏系统.该超高纯氪氙低温精馏系统已完成离线提纯运行,现需要对其运行状态进行深入分析.通过对系统各个运行阶段的温度、压力、流量及产品氙的摩尔分数等参数进行分析,研究该超高纯氪氙低温精馏系统的稳定性和提纯性能.该低温精馏系统在回收率为99%、提纯速率为10 kg/h的条件下稳定运行1.5 m,共提纯5.75 t氙.实验数据表明,系统在各运行阶段状态稳定、安全可靠,产品氙中氪的摩尔分数小于7.99×10-12.PandaX-4T超高纯氪氙低温精馏系统的运行分析具有理论研究价值和工程实际意义,同时也是优化下一阶段精馏提纯运行非常重要的参考依据.
严锐, 王舟, 崔祥仪, 巨永林, 沙海东, 李帅杰, 黄沛尧, 王秀丽 . PandaX-4T超高纯氙去除氪低温精馏系统运行分析[J]. 上海交通大学学报, 2021 , 55(7) : 834 -841 . DOI: 10.16183/j.cnki.jsjtu.2020.180
Based on the McCabe-Thiele (M-T) method and the conservation of mass and energy, the PandaX-4T collaboration group designs an efficient cryogenic distillation system to reduce the mole fraction of krypton in commercial xenon from 5×10-7 to 1×10-14. Since the ultra-high purity xenon cryogenic distillation system has completed the offline purification operation, it is necessary to conduct the corresponding operation analysis. Therefore, the stability and purification performance of the ultra-high purity xenon cryogenic distillation system are studied by analyzing the parameters such as temperature, pressure, flowrate, and mole faction of the product xenon in each operating stage. The PandaX-4T cryogenic distillation system has been operating stably for 1.5 m at a collection efficiency of 99% and a purification rate of 10 kg/h, and has purified 5.75 t of xenon. The experimental data show that the system is stable, safe, and reliable in all stages of operation, and the krypton concentration in product xenon is less than 7.99×10-12. The operation analysis of the PandaX-4T ultra-high purity xenon cryogenic distillation system has a theoretical research value and practical engineering significance, providing very important reference for optimization of distillation operation of the next stage.
[1] | APRILE E, DOKE T. Liquid xenon detectors for particle physics and astrophysics[J]. Reviews of Modern Physics, 2010, 82(3): 2053. |
[2] | AKIMOV D. Techniques and results for the direct detection of dark matter (review)[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2011, 628(1): 50-58. |
[3] | CHEPEL V, ARAÚJO H. Liquid noble gas detectors for low energy particle physics[J]. Journal of Instrumentation, 2013, 8(4): R04001. |
[4] | BERNABEI R, BELLI P, MONTECCHIA F, et al. New limits on particle dark matter search with a liquid xenon target-scintillator[J]. Physics Letters B, 1998, 436(3/4): 379-388. |
[5] | TAN A, XIAO M J, CUI X Y, et al. Dark matter results from first 98.7 days of data from the PandaX-II experiment[J]. Physical Review Letters, 2016, 117(12): 121303. |
[6] | CUI X Y, ABDUKERIM A, CHEN W, et al. Dark matter results from 54-ton-day exposure of PandaX-II experiment[J]. Physical Review Letters, 2017, 119(18): 181302. |
[7] | REN X X, ZHAO L, ABDUKERIM A, et al. Constraining dark matter models with a light mediator at the PandaX-II experiment[J]. Physical Review Letters, 2018, 121(2): 021304. |
[8] | ABE K, HOSAKA J, IIDA T, et al. Distillation of liquid xenon to remove krypton[J]. Astroparticle Physics, 2009, 31(4): 290-296. |
[9] | WANG Z, BAO L, HAO X H, et al. Design and construction of a cryogenic distillation device for removal of krypton for liquid xenon dark matter detectors[J]. The Review of Scientific Instruments, 2014, 85(1): 015116. |
[10] | WANG Z, BAO L, HAO X H, et al. Large scale xenon purification using cryogenic distillation for dark matter detectors[J]. Journal of Instrumentation, 2014, 9(11): P11024. |
[11] | APRILE E, AALBERS J, AGOSTINI F, et al. Removing krypton from xenon by cryogenic distillation to the ppq level[J]. European Physical Journal C, 2017, 77:1-12. |
[12] | FIEGUTH A, COLLABORATION X. Distillation column for the XENON1T experiment[J]. Journal of Physics: Conference Series, 2016, 718:042020. |
[13] | 崔祥仪. PandaX-II暗物质实验与PandaX-4T制冷循环与精馏系统[D]. 上海: 上海交通大学, 2019. |
[13] | CUI Xiangyi. PandaX-II dark matter experiment and the PandaX-4T cryogenics, circulation and distillation system[D]. Shanghai: Shanghai Jiao Tong University, 2019. |
[14] | 王舟, 张华, 巨永林. 暗物质探测器的液氙低温精馏系统研制[J]. 上海交通大学学报, 2013, 47(8): 1282-1286. |
[14] | WANG Zhou, ZHANG Hua, JU Yonglin. Design and construction of a cryogenic distillation system of liquid xenon for dark matter detector[J]. Journal of Shanghai Jiao Tong University, 2013, 47(8): 1282-1286. |
[15] | MCCABE W L, SMITH J C. Unit operations of chemical engineering[M]. 3rd ed. New York, NY, USA: McGraw-Hill, 1976. |
[16] | DOBI A, DAVIS C, HALL C, et al. Detection of krypton in xenon for dark matter applications[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2011, 665:1-6. |
/
〈 |
|
〉 |