连续性RESET/SET对相变存储器疲劳特性的影响
收稿日期: 2020-01-22
网络出版日期: 2021-06-08
基金资助
国家重点研发计划(2017YFA0206101);国家重点研发计划(2017YFB0701703);国家重点研发计划(2017YFA0206104);国家重点研发计划(2017YFB0405601);国家重点研发计划(2018YFB0407500);国家自然科学基金(61874178);国家自然科学基金(61874129);国家自然科学基金(91964204);国家自然科学基金(61904186);国家自然科学基金(61904189);上海市科委(17DZ2291300);上海市科委(19JC1416801);上海市扬帆计划(19YF1456100)
Impact of Continuous RESET/SET Operations on Endurance Characteristic of Phase Change Memory
Received date: 2020-01-22
Online published: 2021-06-08
为探究连续性RESET操作和连续性SET操作对相变存储器疲劳特性的影响,基于4Mbit相变存储器芯片进行了不同RESET-SET次数比的疲劳特性研究,给出了连续RESET和连续SET操作后相变单元阻值分布的变化情况.将RESET-only与SET-only模式下的疲劳特性与常规疲劳特性进行了对比分析,并对失效原因和修复方法进行了讨论;对比了8种不同RESET-SET次数比下的单元疲劳特性.实验结果表明:连续性RESET操作对相变存储器疲劳特性的影响很小,RESET-only模式下的相变存储器疲劳特性与常规疲劳特性处于同一量级;连续性SET操作会显著降低相变存储器的的疲劳特性,SET-only模式下相变存储器疲劳特性比常规疲劳特性低2个数量级;连续性RESET操作带来的失效无法逆转,而连续性SET操作带来的失效可以通过间隙性施加RESET操作得以修复.
关键词: 相变存储器; 连续性RESET操作; 连续性SET操作; 疲劳特性; 失效改善
吴磊, 蔡道林, 陈一峰, 刘源广, 闫帅, 李阳, 余力, 谢礼, 宋志棠 . 连续性RESET/SET对相变存储器疲劳特性的影响[J]. 上海交通大学学报, 2021 , 55(9) : 1134 -1141 . DOI: 10.16183/j.cnki.jsjtu.2020.028
In order to explore the effects of continuous RESET operations and continuous SET operations on the endurance characteristic of phase change memory (PCM), the endurance characteristics of PCM at different ratios of RESET-SET times are studied based on a 4Mbit PCM chip. The variation of resistance distributions of PCM after continuous RESET and continuous SET operations are measured. The endurance characteristics of PCM in RESET-only and SET-only operations are compared with the typical endurance characteristic. Besides, the causes and repair methods of failure are also discussed. Moreover, the endurance characteristics of PCM at 8 different RESET-SET ratios are compared. The research results show that continuous RESET operation has little effect on the endurance characteristic of PCM, and the endurance characteristic of PCM in the RESET-only mode is on the same order as the typical endurance characteristic. However, the continuous SET operation has a significantly destructive effect on the endurance characteristic of PCM, and the endurance characteristic of PCM in the SET-only mode is 2 orders of magnitude lower than the typical endurance characteristic. The failure process of PCM caused by continuous RESET operation is irreversible while the failure process of PCM caused by continuous SET operation can be repaired by intermittent RESET operation.
[1] | BURR G W, BREITWISCH M J, FRANCESCHINI M, et al. Phase change memory technology[J]. Journal of Vacuum Science & Technology B, Nanotechnology and Microelectronics: Materials, Processing, Measurement, and Phenomena, 2010, 28(2):223-262. |
[2] | WONG H S P, RAOUX S, KIM S, et al. Phase change memory[J]. Proceedings of the IEEE, 2010, 98(12):2201-2227. |
[3] | OVSHINSKY S R. Reversible electrical switching phenomena in disordered structures[J]. Physical Review Letters, 1968, 21(20):1450-1453. |
[4] | BURR G W, SHELBY R M, SEBASTIAN A, et al. Neuromorphic computing using non-volatile memory[J]. Advances in Physics: X, 2017, 2(1):89-124. |
[5] | TUMA T, PANTAZI A, LE GALLO M, et al. Stochastic phase-change neurons[J]. Nature Nanotechnology, 2016, 11(8):693-699. |
[6] | GAO D, LIU B, XU Z, et al. Failure analysis of nitrogen-doped Ge2Sb2Te5 phase change memory[J]. IEEE Transactions on Device and Materials Reliability, 2016, 16(1):74-79. |
[7] | LU Y Y, CAI D L, CHEN Y F, et al. The impact of the electrode performance on the endurance properties of the phase change memory device[J]. IEEE Transactions on Device and Materials Reliability, 2019, 19(1):164-168. |
[8] | RAO F, DING K Y, ZHOU Y X, et al. Reducing the stochasticity of crystal nucleation to enable subnanosecond memory writing[J]. Science, 2017, 358(6369):1423-1427. |
[9] | ZHU M, WU L C, RAO F, et al. The micro-structure and composition evolution of Ti-Sb-Te alloy during reversible phase transition in phase change memory[J]. Applied Physics Letters, 2014, 104(6):063105. |
[10] | KIM W, BRIGHTSKY M, MASUDA T, et al. ALD-based confined PCM with a metallic liner toward unlimited endurance[C]// 2016 IEEE International Electron Devices Meeting. Piscataway, NJ, USA: IEEE, 2016: 83-86. |
[11] | TOM T. SNIA NVM programming model V1.2 and beyond [EB/OL].(2017-9-12) [2019-6-12]. https://www.snia.org/educational-library/nvm-programming-model-v-12-and-beyond-2017. |
[12] | SONG Z T, CAI D L, LI X, et al. High endurance phase change memory chip implemented based on carbon-doped Ge2Sb2Te5 in 40 nm node for embedded application[C]// 2018 IEEE International Electron Devices Meeting. Piscataway, NJ, USA: IEEE, 2018: 620-623. |
[13] | NAM S W, KIM C, KWON M H, et al. Phase separation behavior of Ge2Sb2Te5 line structure during electrical stress biasing[J]. Applied Physics Letters, 2008, 92(11):111913. |
[14] | NAM S W, LEE D, KWON M H, et al. Electric-field-induced mass movement of Ge2Sb2Te5 in bottleneck geometry line structures[J]. Electrochemical and Solid-State Letters, 2009, 12(4):H155. |
[15] | DEBUNNE A, VIRWANI K, PADILLA A, et al. Evidence of crystallization-induced segregation in the phase change material Te-rich GST[J]. Journal of the Electrochemical Society, 2011, 158(10):965-972. |
[16] | WU L, CAI D L, CHEN Y F, et al. Endurance improvement of phase change memory based on high and narrow RESET currents[J]. ECS Journal of Solid State Science and Technology, 2020, 9(3):035004. |
/
〈 |
|
〉 |