基于位移放大机构的压电快速反射镜设计

展开
  • 1.中国科学院 上海技术物理研究所, 上海 200083
    2.中国科学院大学, 北京 100049
谢 永(1987-),男,河北省承德市人,助理研究员,主要从事压电陶瓷精密驱动机构方面研究

收稿日期: 2020-04-13

  网络出版日期: 2021-06-08

Design of Fast Steering Mirror Based on Displacement Amplification Mechanism

Expand
  • 1. Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083, China
    2. University of Chinese Academy of Sciences, Beijing 100049, China

Received date: 2020-04-13

  Online published: 2021-06-08

摘要

针对压电陶瓷直驱式快反镜偏转角度受到压电陶瓷伸长量较小的限制,无法实现大转角的现状,设计了一款新型压电快反镜,采用二级杠杆式放大机构实现压电陶瓷微小位移的放大,并在放大机构上粘贴电阻应变片作为反馈传感器.实验结果表明,所设计的快反镜可实现大于50 mrad的机械偏转范围,同时闭环线性度优于0.5%,能够满足大范围、高精度光束指向的需求.

本文引用格式

谢永, 刘重飞, 贾建军, 戴箭胜 . 基于位移放大机构的压电快速反射镜设计[J]. 上海交通大学学报, 2021 , 55(9) : 1142 -1150 . DOI: 10.16183/j.cnki.jsjtu.2020.103

Abstract

According to the current situation that the deflection angle of the piezoelectric ceramics direct drive fast steering mirror (FSM) is restricted by small elongation of piezoelectric ceramics and the large deflection angle cannot be realized, a novel piezoelectric FSM is designed. A two-stage lever-type amplification mechanism is adopted to realize the amplification of small displacement of piezoelectric ceramics and a strain gauge attached to the amplification mechanism is considered as the displacement sensor. The experimental results indicate that the deflection angle of the designed FSM is larger than 50 mrad, and the closed-loop linearity is below 0.5%, which satisfies the requirements of large deflection angle and accuracy pointing for light beam.

参考文献

[1] 鲁亚飞. 快速反射镜机械结构特性设计问题研究[D]. 长沙: 国防科学技术大学, 2009.
[1] LU Yafei. Research on fast/fine steering mirror system[D]. Changsha: National University of Defense Technology, 2009.
[2] 丁科, 黄永梅, 马佳光, 等. 抑制光束抖动的快速反射镜复合控制[J]. 光学精密工程, 2011, 19(9):1991-1998.
[2] DING Ke, HUANG Yongmei, MA Jiaguang, et al. Composite control of fast-steering-mirror for beam jitter[J]. Optics and Precision Engineering, 2011, 19(9):1991-1998.
[3] GUTIERREZ H, GAINES J, NEWMAN M. Line of sight stabilization and back scanning using a fast steering mirror and blended rate sensors[C]// Infotech@Aerospace 2011. St. Louis, Missouri, USA: AIAA, 2011: 1-8.
[4] KLUK D J, BOULET M T, TRUMPER D L. A high-bandwidth, high-precision, two-axis steering mirror with moving iron actuator[J]. Mechatronics, 2012, 22(3):257-270.
[5] 徐飞飞, 纪明, 赵创社. 快速偏转反射镜研究现状及关键技术[J]. 应用光学, 2010, 31(5):847-850.
[5] XU Feifei, JI Ming, ZHAO Chuangshe. Status of fast steering mirror[J]. Journal of Applied Optics, 2010, 31(5):847-850.
[6] 徐新行, 韩旭东, 王兵, 等. 机载刚性支撑式快速控制反射镜设计[J]. 光学精密工程, 2016, 24(1):126-133.
[6] XU Xinhang, HAN Xudong, WANG Bing, et al. Design of fast steering mirror with rigid support structure for airborne platform[J]. Optics and Precision Engineering, 2016, 24(1):126-133.
[7] 鲁亚飞, 范大鹏, 范世珣, 等. 快速反射镜两轴柔性支承设计[J]. 光学精密工程, 2010, 18(12):2574-2582.
[7] LU Yafei, FAN Dapeng, FAN Shixun, et al. Design of two-axis elastic support for fast steering mirror[J]. Optics and Precision Engineering, 2010, 18(12):2574-2582.
[8] 吴鑫. 高性能快速控制反射镜研究[D]. 武汉: 华中科技大学, 2012.
[8] WU Xin. Research on high performance fast steering mirror[D]. Wuhan: Huazhong University of Science & Technology, 2012.
[9] 刘重飞, 贾建军, 李大永, 等. 一种双面快速转向反射镜结构设计与分析[J]. 机械科学与技术, 2016, 35(8):1213-1218.
[9] LIU Chongfei, JIA Jianjun, LI Dayong, et al. Structure design and analysis of a double-sided fast steering mirror[J]. Mechanical Science and Technology, 2016, 35(8):1213-1218.
[10] 宋盛, 刘重飞, 苑自勇, 等. 压电驱动双面快速指向镜的设计[J]. 光学精密工程, 2016, 24(11):2777-2782.
[10] SONG Sheng, LIU Chongfei, YUAN Ziyong, et al. Design of double-sided fast steering mirror based on piezoelectric actuating[J]. Optics and Precision Engineering, 2016, 24(11):2777-2782.
文章导航

/