压铸铝合金用铣刀表面微织构及切削特性研究
收稿日期: 2020-10-21
网络出版日期: 2021-06-08
基金资助
国家自然科学基金项目(51775153);浙江省自然科学基金项目(LQ20E050012);浙江省基础公益技术研究计划(LGG20E050002)
Surface Micro-Texture and Cutting Characteristics of Milling Cutter for Die-Casting Aluminum Alloy
Received date: 2020-10-21
Online published: 2021-06-08
针对压铸铝合金在切削力影响下加工精度低、表面质量不高等问题,提出在铣刀前刀面加工沟槽和V型阵列表面微织构的方法.通过三向力传感器监测并分析铣削过程中的铣削力变化情况,重点分析y向铣削力(Fy)频谱特性.将采集到的Fy 进行快速傅里叶变换,得到3种不同铣刀Fy 的频谱分析图,利用表面形貌和表面粗糙度评价表面微织构铣刀的铣削性能.结果表明:相较于普通铣刀在x、y和z方向的铣削力均值,沟槽阵列表面微织构铣刀的均值分别降低了3.8%、0.29%和11.7%,V型阵列表面微织构铣刀的均值分别降低了8.5%、14.3%和12.4%;在6倍主轴频率处的Fy高频幅值的大小关系为普通铣刀>沟槽阵列铣刀>V型阵列铣刀;采用微织构铣刀加工的表面,其表面粗糙度比普通铣刀的小,且V型阵列铣刀加工工件的表面质量最好.研究结果将为压铸铝合金精密铣削提供理论依据.
何利华, 潘建峰, 倪敬, 冯凯, 崔智 . 压铸铝合金用铣刀表面微织构及切削特性研究[J]. 上海交通大学学报, 2021 , 55(6) : 750 -756 . DOI: 10.16183/j.cnki.jsjtu.2020.195
Aimed at the problems of low processing accuracy and surface quality of die-casting aluminum alloy under the influence of cutting force, a method of using surface micro-textured milling cutter with groove and V-shaped arrays on the rake face was proposed. The variations of milling forces were monitored and analyzed by using tri-direction-force transducer, and the spectrum characteristics of the y-direction milling force (Fy) was emphatically analyzed. The spectrum analysis diagrams of Fy of three different milling cutters were obtained by fast Fourier transform. The milling performance of the micro-textured milling cutters was evaluated by surface topography and surface roughness. The results show that compared with the average values in the x, y, and z directions of the conventional milling cutter, the values of the groove micro-structured milling cutter are reduced by 3.8%, 0.29%, and 11.7%, while those of the V-shaped micro-structured milling cutter are reduced by 8.5%, 14.3%, and 12.4%. The relationship between high frequency amplitudes of Fy at 6 times spindle frequency are proposed as conventional milling cutter>groove arrays milling cutter>V-shaped arrays milling cutter. Compared with the conventional milling cutter, the surface roughness is decreased when using micro-textured milling cutters, and the surface quality of the workpiece processed by the V-array milling cutter is the best. This paper will provide a theoretical basis for precision milling of die-cast aluminum alloys.
[1] | 樊振中, 袁文全, 王端志, 等. 压铸铝合金研究现状与未来发展趋势[J]. 铸造, 2020, 69(2):159-166. |
[1] | FAN Zhenzhong, YUAN Wenquan, WANG Duanzhi, et al. Research status and future development trend of Die casting aluminum alloys[J]. Foundry, 2020, 69(2):159-166. |
[2] | WANG H, YANG J, SUN F H. Cutting performances of MCD, SMCD, NCD and MCD/NCD coated tools in high-speed milling of hot bending graphite molds[J]. Journal of Materials Processing Technology, 2020, 276:116401. |
[3] | 任露泉, 杨卓娟, 韩志武. 生物非光滑耐磨表面仿生应用研究展望[J]. 农业机械学报, 2005, 36(7):144-147. |
[3] | REN Luquan, YANG Zhuojuan, HAN Zhiwu. Non-smooth wearable surfaces of living creatures and their bionic application[J]. Transactions of the Chinese Society of Agricultural Machinery, 2005, 36(7):144-147. |
[4] | 孙志宏, 单鸿波, 史婷婷, 等. 仿生非光滑表面纺杯减阻性能的数值模拟[J]. 纺织学报, 2010, 31(5):117-121. |
[4] | SUN Zhihong, SHAN Hongbo, SHI Tingting, et al. Numerical simulation on drag reduction of rotor with non-smooth bionic surface[J]. Journal of Textile Research, 2010, 31(5):117-121. |
[5] | 王春举, 程利冬, 薛韶曦, 等. 仿生减阻微结构制造技术综述[J]. 精密成形工程, 2019, 11(3):88-98. |
[5] | WANG Chunju, CHENG Lidong, XUE Shaoxi, et al. Manufacturing technologies of bionic micro-structures for drag reduction: A review[J]. Journal of Netshape Forming Engineering, 2019, 11(3):88-98. |
[6] | XIE J, LUO M J, WU K K, et al. Experimental study on cutting temperature and cutting force in dry turning of titanium alloy using a non-coated micro-grooved tool[J]. International Journal of Machine Tools and Manufacture, 2013, 73:25-36. |
[7] | 陈亚东, 郭旭红, 张克栋, 等. 表面微织构铣刀切削CFRP的表面加工质量研究[J]. 工具技术, 2018, 52(11):40-44. |
[7] | CHEN Yadong, GUO Xuhong, ZHANG Kedong, et al. Study on surface quality of CFRP machining by micro-textured milling tool[J]. Tool Engineering, 2018, 52(11):40-44. |
[8] | 宋文龙. 微池自润滑刀具的研究[D]. 济南: 山东大学, 2010. |
[8] | SONG Wenlong. Study on micro-pool self-lubricating cutting tools[D]. Jinan: Shandong University, 2010. |
[9] | 陈日曜. 金属切削原理[M]. 第2版. 北京: 机械工业出版社, 2012. |
[9] | CHEN Riyao. Theory of metal cutting[M]. 2nd ed. Beijing: China Machine Press, 2012. |
[10] | 戚宝运. 基于表面微织构刀具的钛合金绿色切削冷却润滑技术研究[D]. 南京: 南京航空航天大学, 2011. |
[10] | QI Baoyun. Research on cooling/lubrication technology of green cutting of titanium alloy using surface micro-textured cutting tool[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2011. |
[11] | 冯之敬. 机械制造工程原理[M]. 第5版. 北京: 清华大学出版社, 2015. |
[11] | FENG Zhijing. Principle of mechanical manufacturing engineering[M]. 5th ed. Beijing: Tsinghua University Press, 2015. |
[12] | 温诗铸, 黄平. 摩擦学原理[M]. 第3版. 北京: 清华大学出版社, 2008. |
[12] | WEN Shizhu, HUANG Ping. Principles of tribology[M]. 3rd ed. Beijing: Tsinghua University Press, 2008. |
[13] | 赵登超, 刘晓敏, 陈亮, 等. 仿生微织构球头铣刀对6061铝合金切削性能的影响研究[J]. 工具技术, 2019, 53(6):27-32. |
[13] | ZHAO Dengchao, LIU Xiaomin, CHEN Liang, et al. Influence of biomimetic micro-textured ball end mill on machinability of 6061 aluminum alloy[J]. Tool Engineering, 2019, 53(6):27-32. |
[14] | HUANG P L, LI J F, SUN J, et al. Vibration ana-lysis in milling titanium alloy based on signal processing of cutting force[J]. International Journal of Advanced Manufacturing Technology, 2013, 64:613-621. |
[15] | TOH C K. Vibration analysis in high speed rough and finish milling hardened steel[J]. Journal of Sound and Vibration, 2004, 278(1/2):101-115. |
[16] | RAO C M, RAO S S, HERBERT M A. Development of novel cutting tool with a micro-hole pattern on PCD insert in machining of titanium alloy[J]. Journal of Manufacturing Processes, 2018, 36:93-103. |
[17] | YAN P, RONG Y M, WANG G. The effect of cutting fluids applied in metal cutting process[J]. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 2016, 230(1):19-37. |
[18] | NIKETH S, SAMUEL G L. Surface texturing for tribology enhancement and its application on drill tool for the sustainable machining of titanium alloy[J]. Journal of Cleaner Production, 2017, 167:253-270. |
/
〈 |
|
〉 |