基于胶层填充的薄板包边成形数值模拟及实验研究
收稿日期: 2020-12-23
网络出版日期: 2021-06-08
基金资助
国家自然科学基金资助项目(51975416)
Numerical Simulation and Experimental Research of Sheet Hemming Forming Based on Adhesive Filling
Received date: 2020-12-23
Online published: 2021-06-08
基于包边模型几何尺寸定义胶层填充率,通过有限元-光滑粒子流体动力学(FEM-SPH)法建立含胶包边工艺数值模拟模型,并与含胶包边实验进行对比验证,实现了折边胶直径、离边距、包边厚度对填充率影响的定量研究.研究结果表明:实验所得胶层流动、最终填充状态与数值模拟结果的一致性较好,实验所得胶层填充率与数值模拟结果吻合度较高,以此验证了数值模拟模型的可行性和准确性.进一步分析表明:折边胶直径、离边距、包边厚度对填充率的影响依次减小,并拟合得到填充率关于折边胶直径、离边距、包边厚度等工艺参数的关系式,为车身薄板含胶包边工艺的优化设计提供依据.
关键词: 胶层填充; 包边成形; 有限元-光滑粒子流体动力学; 车身门盖件
唐耿林, 李建军, 李元辉, 张珑耀, 朱文峰 . 基于胶层填充的薄板包边成形数值模拟及实验研究[J]. 上海交通大学学报, 2022 , 56(4) : 523 -531 . DOI: 10.16183/j.cnki.jsjtu.2020.429
The filling rate of adhesive is defined based on the geometric dimensions of the hemming model, and the numerical simulation model of the hemming process with adhesive is established by using the finite element method-smoothed particle hydrodynamics (FEM-SPH) method. By comparing and verifying with the hemming experiment with adhesive, the quantitative study of the influences of the hemming adhesive diameter, the edge distance, and the hemming thickness on the filling rate is realized. The research results show that the flow state and the final filling state of the adhesive layer obtained in the experiment are similar to the numerical simulation results, and the filling rate of the adhesive layer obtained in the experiment is highly consistent with the numerical simulation result, which verifies the feasibility and accuracy of the numerical simulation model. Further analysis shows that the influences of the hemming adhesive diameter, the edge distance, and the hemming thickness on the filling rate decrease in order, and the relationship formulas between the filling rate and process parameters, such as the hemming adhesive diameter, the edge distance, and the hemming thickness, are obtained by fitting, which provides a basis for the optimization design of the hemming process with adhesive of the automobile body sheet.
[1] | 王瑞林, 张云飞, 夏朝峰. 四门二盖PVC气泡成因及优化方案[J]. 汽车工艺师, 2019(7): 44-47. |
[1] | WANG Ruilin, ZHANG Yunfei, XIA Chaofeng. The causes and solutions of four-door and two-cover PVC air bubbles[J]. Auto Manufacturing Engineer, 2019(7): 44-47. |
[2] | 高翔, 吕涛. 车门折边胶溢胶问题的解决[J]. 汽车工艺与材料, 2017(3): 35-37. |
[2] | GAO Xiang, LV Tao. Solution to the problem of glue overflow in car door folding[J]. Automobile Technology & Material, 2017(3): 35-37. |
[3] | LI J J, ZHU W F. Numerical simulation of the roller hemming process based on pressure-viscosity effect[J]. The International Journal of Advanced Manufacturing Technology, 2019, 105(1): 1023-1039. |
[4] | LE MAOÛT N, MANACH P Y, THUILLIER S. Influence of prestrain on the numerical simulation of the roller hemming process[J]. Journal of Materials Processing Technology, 2012, 212(2): 450-457. |
[5] | 李维康, 张丽桂. 折边胶泡问题的改善途径及评判标准制定[J]. 粘接, 2016, 37(8): 62-66. |
[5] | LI Weikang, ZHANG Ligui. Improving methods and criterion setting of bubble defects in PVC hemming sealer[J]. Adhesion, 2016, 37(8): 62-66. |
[6] | 毕超君, 华云, 贾鹏鹏, 等. PVC焊缝密封胶起泡问题的解决[J]. 电镀与涂饰, 2017, 36(10): 542-544. |
[6] | BI Chaojun, HUA Yun, JIA Pengpeng, et al. A solution to blistering of PVC weld adhesive[J]. Electroplating & Finishing, 2017, 36(10): 542-544. |
[7] | 朱北芳. 汽车门盖折边处密封胶气泡问题的具体解决方法[J]. 汽车实用技术, 2019(19): 176-178. |
[7] | ZHU Beifang. Solutions to the air bubble problem in sealant at the hemming position of the car doors[J]. Automobile Applied Technology, 2019(19): 176-178. |
[8] | 欧阳义平, 杨启. SPH法数值仿真三维切削破岩和切削力估算[J]. 上海交通大学学报, 2016, 50(1): 84-90. |
[8] | OUYANG Yiping, YANG Qi. Numerical simulation of rock cutting in 3D with SPH method and estimation of cutting force[J]. Journal of Shanghai Jiao Tong University, 2016, 50(1): 84-90. |
[9] | WANG S, SHU A P, RUBINATO M, et al. Numerical simulation of non-homogeneous viscous debris-flows based on the smoothed particle hydrodynamics (SPH) method[J]. Water, 2019, 11(11): 2314. |
[10] | ZHANG N B, ZHENG X, MA Q W. Study on wave-induced kinematic responses and flexures of ice floe by Smoothed Particle Hydrodynamics[J]. Computers & Fluids, 2019, 189: 46-59. |
[11] | 石秉良, 周孔亢, 张云, 等. 基于SPH算法的驾驶室底部结构对爆炸冲击波响应数值仿真[J]. 机械工程学报, 2016, 52(16): 132-139. |
[11] | SHI Bingliang, ZHOU Kongkang, ZHANG Yun, et al. Numerical simulation of the response of vehicle cab bottom shell structure under explosive blast wave based on smoothed particle hydrodynamics[J]. Journal of Mechanical Engineering, 2016, 52(16): 132-139. |
[12] | ZHENG Z J, KULASEGARAM S, CHEN P, et al. An efficient SPH methodology for modelling mechanical characteristics of particulate composites[J]. Defence Technology, 2021, 17(1): 135-146. |
[13] | SONG H W, PAN P F, REN G Q, et al. SPH/FEM modeling for laser-assisted machining of fused silica[J]. The International Journal of Advanced Manufacturing Technology, 2020, 106(5/6): 2049-2064. |
[14] | MONAGHAN J J, RAFIEE A. A simple SPH algorithm for multi-fluid flow with high density ratios[J]. International Journal for Numerical Methods in Fluids, 2013, 71(5): 537-561. |
[15] | 牛伟龙, 莫蓉, 孙惠斌, 等. 基于光滑粒子流体动力学方法与TANH本构方程的钛合金切屑形态预测[J]. 上海交通大学学报, 2019, 53(5): 624-632. |
[15] | NIU Weilong, MO Rong, SUN Huibin, et al. Predication of the titanium alloy’s chip morphology based on TANH constitutive model and smoothed particle hydrodynamic method[J]. Journal of Shanghai Jiao Tong University, 2019, 53(5): 624-632. |
[16] | HU W, GUO G N, HU X Z, et al. A consistent spatially adaptive smoothed particle hydrodynamics method for fluid-structure interactions[J]. Computer Methods in Applied Mechanics and Engineering, 2019, 347: 402-424. |
[17] | 高耀东, 周同. 基于三维FEM-SPH转换算法的截齿冲击结核体仿真分析[J]. 煤炭学报, 2017, 42(Sup.2): 568-575. |
[17] | GAO Yaodong, ZHOU Tong. Numerical simulation and analysis for bit impact on pyrites based on 3D FEM-SPH conversion algorithm[J]. Journal of China Coal Society, 2017, 42(Sup.2): 568-575. |
/
〈 |
|
〉 |