基于邻域保持嵌入的主多项式非线性过程故障检测

展开
  • 沈阳化工大学 信息工程学院, 沈阳 110142
李 元(1964-),女,辽宁省沈阳市人,教授,博士生导师,现主要从事统计过程控制和基于数据驱动的过程故障监控与诊断研究,电话(Tel.):13082424115;E-mail: liyuan@mail.tsinghua.edu.cn.

收稿日期: 2020-09-14

  网络出版日期: 2021-06-08

基金资助

国家自然科学基金重大项目(61490701);国家自然科学基金项目(61673279)

Principal Polynomial Nonlinear Process Fault Detection Based on Neighborhood Preserving Embedding

Expand
  • College of Information Engineering, Shenyang University of Chemical Technology, Shenyang 110142, China

Received date: 2020-09-14

  Online published: 2021-06-08

摘要

针对化工过程的变量数据维数高、非线性的问题,提出基于邻域保持嵌入(NPE)-主多项式分析(PPA) 的过程故障检测算法.应用NPE算法提取高维数据的低维子流形,能够解决传统的线性降维算法不能提取局部结构信息的问题,对维数进行约减.利用PPA法时,使用一组灵活的主多项式分量来描述数据, 能够有效地捕捉过程数据中固有的非线性结构.在降维后的流形空间进行主多项式分析并建立Hotelling’s T2和平方预测误差统计量模型,同时确定控制限以进行故障检测.最后,通过一组非线性数值实例和Tennessee Eastman化工过程数据,将NPE-PPA算法与传统的核主元分析法、PPA法进行对比分析,验证所提算法的有效性及优越性.

本文引用格式

李元, 姚宗禹 . 基于邻域保持嵌入的主多项式非线性过程故障检测[J]. 上海交通大学学报, 2021 , 55(8) : 1001 -1008 . DOI: 10.16183/j.cnki.jsjtu.2020.295

Abstract

Aimed at the problem of high dimension and nonlinearity of variable data in chemical process, a process fault detection algorithm based on neighborhood preserving embedding(NPE )-principal polynomial analysis (PPA) is proposed in this paper. The NPE algorithm is used to extract low dimensional submanifolds of high dimensional data, which overcomes the problem that the traditional linear dimensionality reduction algorithm cannot extract local structure information, so as to reduce the dimensions. The PPA method is used to describe data by a set of flexible principal polynomial components, which can effectively capture the inherent nonlinear structure of process data. The principal polynomial analysis is conducted in the reduced manifold space, and Hotelling’s T2 and square prediction error statistical models are established to determine the control limit for fault detection. Finally, compared with the traditional kernel principal component analysis and the PPA method, a group of nonlinear numerical examples and Tennessee Eastman chemical process data experiments are performed to verify the effectiveness and superiority of the NPE-PPA algorithm.

参考文献

[1] SEVERSON K, CHAIWATANODOM P, BRAATZ R D. Perspectives on process monitoring of industrial systems[J]. Annual Reviews in Control, 2016, 42:190-200.
[2] MD NOR N, CHE HASSAN C R, HUSSAIN M A. A review of data-driven fault detection and diagnosis methods: Applications in chemical process systems[J]. Reviews in Chemical Engineering, 2020, 36(4):513-553.
[3] JIANG Q C, YAN X F. Just-in-time reorganized PCA integrated with SVDD for chemical process monitoring[J]. AIChE Journal, 2014, 60(3):949-965.
[4] ZHANG X M, LI Y, KANO M. Quality prediction in complex batch processes with just-in-time learning model based on non-Gaussian dissimilarity measure[J]. Industrial and Engineering Chemistry Research, 2015, 54:7694-7705.
[5] LI Y, ZHANG X M. Variable moving windows based non-Gaussian dissimilarity analysis technique for batch processes fault detection and diagnosis[J]. The Canadian Journal of Chemical Engineering, 2015, 93(4):689-707.
[6] KANO M, NAKAGAWA Y. Data-based process monitoring, process control, and quality improvement: Recent developments and applications in steel industry[J]. Computers & Chemical Engineering, 2008, 32(1/2):12-24.
[7] LUO L J, BAO S Y, MAO J F, et al. Monitoring batch processes using sparse parallel factor decomposition[J]. Industrial & Engineering Chemistry Research, 2017, 56(44):12682-12692.
[8] LI Y, ZHANG X M. Diffusion maps based k-nearest-neighbor rule technique for semiconductor manufacturing process fault detection[J]. Chemometrics and Intelligent Laboratory Systems, 2014, 136:47-57.
[9] SCHOLKOPF B, SMOLA A, MULLER K R. Nonlinear component analysis as a kernel eigenvalue problem[J]. Neural Computation, 1998, 10(5):1299-1319.
[10] LEE J M, YOO C, CHOI S W, et al. Nonlinear process monitoring using kernel principal component analysis[J]. Chemical Engineering Science, 2004, 59(1):223-234.
[11] CHOI S W, LEE C, LEE J M, et al. Fault detection and identification of nonlinear processes based on kernel PCA[J]. Chemometrics and Intelligent Laboratory Systems, 2005, 75(1):55-67.
[12] BELKIN M, NIYOGI P. Laplacian eigenmaps for dimensionality reduction and data representation[J]. Neural Computation, 2003, 15(6):1373-1396.
[13] KRAMER M A. Nonlinear principal component analysis using autoassociative neural networks[J]. AIChE Journal, 1991, 37(2):233-243.
[14] MONAHAN A H. Nonlinear principal component analysis by neural networks: Theory and application to the Lorenz system[J]. Journal of Climate, 2000, 13(4):821-835.
[15] DONG D, MCAVOY T J. Nonlinear principal component analysis—Based on principal curves and neural networks[J]. Computers & Chemical Engineering, 1996, 20(1):65-78.
[16] 张妮, 田学民. 基于等距离映射的非线性动态故障检测方法[J]. 上海交通大学学报, 2011, 45(8):1202-1206.
[16] ZHANG Ni, TIAN Xuemin. Nonlinear dynamic fault detection method based on isometric mapping[J]. Journal of Shanghai Jiao Tong University, 2011, 45(8):1202-1206.
[17] LAPARRA V, TUIA D, JIMÉNEZ S, et al. Principal polynomial analysis for remote sensing data processing[C]//2011 IEEE International Geoscience and Remote Sensing Symposium. Vancouver, BC, Canada: IEEE, 2011: 12536130.
[18] LAPARRA V, TULA D, JIMENEZ S, et al. Nonlinear data description with principal polynomial analysis[C]//2012 IEEE International Workshop on Machine Learning for Signal Processing. Santander, Spain: IEEE, 2012: 13117221.
[19] ZHANG X M, KANO M, LI Y. Principal polynomial analysis for fault detection and diagnosis of industrial processes[J]. IEEE Access, 2018, 6:52298-52307.
[20] ZHANG X M, LI Y. Multiway principal polynomial analysis for semiconductor manufacturing process fault detection[J]. Chemometrics and Intelligent Laboratory Systems, 2018, 181:29-35.
[21] HE X F, CAI D, YAN S C, et al. Neighborhood preserving embedding[C]//Tenth IEEE International Conference on Computer Vision. Beijing: IEEE, 2005: 1208-1213.
[22] DOWNS J J, VOGEL E F. A plant-wide industrial process control problem[J]. Computers & Chemical Engineering, 1993, 17(3):245-255.
[23] GE Z Q, SONG Z H. Process monitoring based on independent component analysis-principal component analysis (ICA-PCA) and similarity factors[J]. Industrial & Engineering Chemistry Research, 2007, 46(7):2054-2063.
[24] YIN S, DING S X, HAGHANI A, et al. A comparison study of basic data-driven fault diagnosis and process monitoring methods on the benchmark Tennessee Eastman process[J]. Journal of Process Control, 2012, 22(9):1567-1581.
[25] JIANG L, SONG Z H, GE Z Q, et al. Robust self-supervised model and its application for fault detection[J]. Industrial & Engineering Chemistry Research, 2017, 56(26):7503-7515.
文章导航

/