核电站蒸汽发生器再循环水质量流量实时估计方法

展开
  • 1.中广核工程有限公司 核电安全监测技术与设备国家重点实验室, 广东 深圳 518172
    2.上海交通大学 自动化系, 上海 200240
惠久武(1996-),男,山东省日照市人,博士生,主要从事核电站关键设备机理建模及先进控制策略研究.

收稿日期: 2020-10-29

  网络出版日期: 2021-06-08

基金资助

核电安全监控技术与装备国家重点实验室开放课题(K-2019.426)

A Real-Time Mass Flow Rate Estimation Method of Recirculation Water in Steam Generator of Nuclear Power Plants

Expand
  • 1. State Key Laboratory of Nuclear Power Safety Monitoring Technology and Equipment, China Nuclear Power Engineering Co., Ltd., Shenzhen 518172, Guangdong, China
    2. Department of Automation, Shanghai Jiao Tong University, Shanghai 200240, China

Received date: 2020-10-29

  Online published: 2021-06-08

摘要

根据蒸汽发生器的实际结构,将蒸汽发生器划分为热段、冷段、汽水分离器和汽室,热段和冷段又划分为下降通道和上升通道.基于质量、能量、动量守恒定律,依次建立蒸汽发生器热段、冷段、汽水分离器和汽室分布的参数模型.结合工质物性参数数据库和数据采集系统 (DCS) 实时测量数据实时求解模型,从而获得蒸汽发生器再循环水的质量流量估计值.采用某CPR1000核电机组运行数据的验证结果表明,由所提方法解算得到的蒸汽发生器顶部出口饱和蒸汽温度、压力和质量流量与实测值吻合较好,从而间接证实了蒸汽发生器再循环水质量流量估计的正确性.

本文引用格式

惠久武, 凌君, 栾振华, 王改霞, 董贺, 袁景淇 . 核电站蒸汽发生器再循环水质量流量实时估计方法[J]. 上海交通大学学报, 2022 , 56(1) : 21 -27 . DOI: 10.16183/j.cnki.jsjtu.2020.355

Abstract

According to its actual structure, the steam generator is divided into the hot leg, the cold leg, the steam-water separator, and the steam chamber, where the hot leg and the cold leg are further divided into a descending channel and an ascending channel. Based on the mass, energy, and momentum conservation laws, the distribution parameter models for the hot leg, the cold leg, the steam-water separator, and the steam chamber are established. Combining the physical parameter database of the working medium and the data collection system (DCS) real-time measurement data, the model is solved in real time and the estimated mass flow rate of recirculation water is obtained. The verification results using the operating data of a CPR1000 nuclear power unit show that the calculated temperature, the pressure, and the mass flow rate of the outlet saturated steam of the steam generator agree well with the measured values, which indirectly verifies the correctness of the estimation approach of recirculation water proposed in this paper.

参考文献

[1] 刘亮. 从“十三五”规划看电力转型发展[J]. 大众用电, 2019, 34(4):3-4.
[1] LIU Liang. Power transformation and development based on the 13th five-year plan[J]. Popular Utilization of Electricity, 2019, 34(4):3-4.
[2] 刘法钰, 张小英, 陈佳跃, 等. 螺旋管直流蒸汽发生器一、二次侧耦合传热特性分析[J]. 核动力工程, 2020, 41(5):24-29.
[2] LIU Fayu, ZHANG Xiaoying, CHEN Jiayue, et al. Analysis of coupled flow and heat transfer in primary and secondary sides of helical coil once-through tube steam generator[J]. Nuclear Power Engineering, 2020, 41(5):24-29.
[3] 樊雨轩, 张竞宇, 王晓东, 等. 压水堆核电厂蒸汽发生器传热管道破裂事故源项的计算分析[J]. 核技术, 2020, 43(6):31-36.
[3] FAN Yuxuan, ZHANG Jingyu, WANG Xiaodong, et al. Calculation and analysis of steam generation tube rupture accident source term in PWR[J]. Nuclear Techniques, 2020, 43(6):31-36.
[4] 杨元龙. 基于两流体模型的蒸汽发生器热工水力数值研究[D]. 哈尔滨: 哈尔滨工程大学, 2013.
[4] YANG Yuanlong. Numerical investigation on thermal-hydraulic of steam generator based on two-fluid model[D]. Harbin: Harbin Engineering University, 2013.
[5] 王弘扬, 阮神辉, 文青龙, 等. 基于多孔介质模型的快堆蒸汽发生器热工水力特性数值研究[J]. 核动力工程, 2019, 40(5):51-55.
[5] WANG Hongyang, RUAN Shenhui, WEN Qing-long, et al. Numerical study of fast reactor steam generator based on porous media model[J]. Nuclear Power Engineering, 2019, 40(5):51-55.
[6] 隋增光. 基于CFD的压水堆蒸汽发生器热工水力特性数值研究[D]. 武汉: 华中科技大学, 2019.
[6] SUI Zengguang. Numerical investigation of the thermal-hydraulic characteristics of PWR steam generator based on CFD[D]. Wuhan: Huazhong University of Science and Technology, 2019.
[7] 薛阳, 冯建彪, 林静, 等. 蒸汽发生器水位的自适应模糊自抗扰控制[J]. 中国电力, 2014, 47(6):90-94.
[7] XUE Yang, FENG Jianbiao, LIN Jing, et al. Steam generator water level control based on self-adaptive fuzzy-ADRC logic[J]. Electric Power, 2014, 47(6):90-94.
[8] 刘建阁, 代涛, 张晓辉, 等. 小型自然循环蒸汽发生器水位控制特性分析[J]. 舰船科学技术, 2019, 41(19):108-113.
[8] LIU Jiange, DAI Tao, ZHANG Xiaohui, et al. Water level control characteristic analysis for the small natural circulation steam generator[J]. Ship Science and Technology, 2019, 41(19):108-113.
[9] 姜頔, 刘向杰, 孔小兵. 核电站蒸汽发生器水位的软约束预测控制[J]. 自动化学报, 2019, 45(6):1111-1121.
[9] JIANG Di, LIU Xiangjie, KONG Xiaobing. Soft constrained MPC on water level control in steam generator of a nuclear power plant[J]. Acta Automatica Sinica, 2019, 45(6):1111-1121.
[10] 孙宝芝, 郑陆松, 韩文静, 等. 基于流固耦合的蒸汽发生器换热管结构应力分析[J]. 化工学报, 2014, 65(Sup.1):364-370.
[10] SUN Baozhi, ZHENG Lusong, HAN Wenjing, et al. Analysis on structural stress of tube in steam generator based on fluid-structure interaction[J]. CIESC Journal, 2014, 65(Sup.1):364-370.
[11] 钱虹, 江诚, 潘岳凯, 等. 基于时间序列神经网络的蒸汽发生器传热管泄漏程度诊断研究[J]. 核动力工程, 2020, 41(2):160-167.
[11] QIAN Hong, JIANG Cheng, PAN Yuekai, et al. Diagnosis of leakage degree of steam generator tube based on time series neural network[J]. Nuclear Power Engineering, 2020, 41(2):160-167.
[12] 魏志伟, 王明春, 张雨飞, 等. 蒸汽发生器非线性机理模型与动态特性分析[J]. 发电设备, 2018, 32(4):261-267.
[12] WEI Zhiwei, WANG Mingchun, ZHANG Yufei, et al. Nonlinear mechanism model and dynamic characteristic analysis of a steam generator[J]. Power Equipment, 2018, 32(4):261-267.
[13] 刘勇, 徐海斌, 陈林, 等. 大型钠冷快堆核电站蒸汽发生器仿真模型开发与分析[J]. 中国仪器仪表, 2019(5):71-75.
[13] LIU Yong, XU Haibin, CHEN Lin, et al. Development and analysis of large sodium-cooled fast reactor nuclear power plant steam generator simulation model[J]. China Instrumentation, 2019(5):71-75.
[14] 郭丹, 夏虹, 杨波. 自然循环蒸汽发生器动态水位建模与控制[J]. 哈尔滨工程大学学报, 2018, 39(9):1485-1490.
[14] GUO Dan, XIA Hong, YANG Bo. Modeling and control on dynamic water level of steam generator with natural circulation[J]. Journal of Harbin Engineering University, 2018, 39(9):1485-1490.
[15] 邹海, 李良, 郑伟, 等. 立式自然循环蒸汽发生器机理建模与仿真研究[J]. 舰船科学技术, 2017, 39(5):113-117.
[15] ZOU Hai, LI Liang, ZHENG Wei, et al. Study of mechanism modeling and simulation of natural circulation steam generator[J]. Ship Science and Technology, 2017, 39(5):113-117.
[16] MOKRY S, PIORO I, KIRILLOV P, et al. Supercritical-water heat transfer in a vertical bare tube[J]. Nuclear Engineering and Design, 2010, 240(3):568-576.
[17] QIU Y, LI M J, WANG W Q, et al. An experimental study on the heat transfer performance of a prototype molten-salt rod baffle heat exchanger for concentrated solar power[J]. Energy, 2018, 156:63-72.
[18] LIU Y, DINH N T, SMITH R C, et al. Uncertainty quantification of two-phase flow and boiling heat transfer simulations through a data-driven modular Bayesian approach[J]. International Journal of Heat and Mass Transfer, 2019, 138:1096-1116.
[19] ZHANG K, HOU Y D, TIAN W X, et al. Experimental investigations on single-phase convection and two-phase flow boiling heat transfer in an inclined rod bundle[J]. Applied Thermal Engineering, 2019, 148:340-351.
文章导航

/