基于互信息理论与递归神经网络的短期风速预测模型

展开
  • a. 上海交通大学 船舶海洋与建筑工程学院, 上海 200240
    b.上海交通大学 海洋工程国家重点实验室, 上海 200240
    c.上海交通大学 水动力学教育部重点实验室,上海 200240
王 岩(1994-),男,河北省保定市人,硕士生,研究方向为机器学习在风电中的应用

收稿日期: 2020-12-25

  网络出版日期: 2021-06-08

基金资助

上海市教育委员会科研创新计划自然科学重大项目(2019-01-07-00-02-E00066);国家自然科学基金(51879160);国家自然科学基金(42076210);国家自然科学基金(11772193);上海市“东方学者”计划(TP2017013);上海市曙光学者计划(19SG10)

Short-Term Wind Speed Forecasting Model Based on Mutual Information and Recursive Neural Network

Expand
  • a. School of Naval Architecture, Ocean and Civil Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
    b. State Key Laboratory of Ocean Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
    c. Key Laboratory of Hydrodynamics of the Ministry of Education, Shanghai Jiao Tong University, Shanghai 200240, China

Received date: 2020-12-25

  Online published: 2021-06-08

摘要

风速的波动性和随机性为风电并网造成安全隐患,提高风速预测精度对于风电系统的稳定和风能发展十分重要.提出一种基于互信息(MI)理论和递归神经网络(RNN)的短期风速预测组合新模型(MI-RNN).该模型利用MI理论选择最优的历史风速序列长度(τ),通过每τ步预测下一时间点风速的方式,将历史风速数据输入RNN中进行模型训练,并由训练后的RNN模型输出最终的风速预测结果.将MI-RNN模型应用于风电场的风速数据集中,与传统机器学习风速预测模型进行比较,以验证模型的预测精度.结果显示,MI-RNN模型的预测精度更高,预测稳定性更强,并且能够准确预测未来风向,有望应用于含空间维度的风电场的风速预测.

本文引用格式

王岩, 陈耀然, 韩兆龙, 周岱, 包艳 . 基于互信息理论与递归神经网络的短期风速预测模型[J]. 上海交通大学学报, 2021 , 55(9) : 1080 -1086 . DOI: 10.16183/j.cnki.jsjtu.2020.433

Abstract

The volatility and randomness of wind speed have caused potential safety hazards to wind power grid integration. Improving wind speed forecasting is crucial to the stability of wind power systems and the development of wind energy. A novel short-term wind speed forecasting model (MI-RNN) was proposed based on mutual information (MI) and recursive neural network (RNN). In this model, the MI theory was introduced to select the optimal length of historical wind speed sequence (τ), and the method of using each τ step to forecast wind speed at the next time point was adopted to input the historical wind speed data into RNN for model training. The final wind speed forecasting result was output by the trained RNN model. Besides, the MI-RNN model was applied to the wind speed dataset collected from a wind farm and the forecasting accuracy was compared with that of the traditional wind forecasting methods. The results show that the MI-RNN model has achieved a higher forecasting accuracy compared with the commonly used wind farm wind speed forecasting methods, and can accurately forecast the future wind direction, which is expected to be applied to wind speed forecasting of wind farms with spatial dimensions.

参考文献

[1] ZHANG Z D, YE L, QIN H, et al. Wind speed prediction method using shared weight long short-term memory network and Gaussian process regression[J]. Applied Energy, 2019, 247:270-284.
[2] CHEN J, ZENG G Q, ZHOU W, et al. Wind speed forecasting using nonlinear-learning ensemble of deep learning time series prediction and extremal optimization[J]. Energy Conversion and Management, 2018, 165:681-695.
[3] KHOSRAVI A, MACHADO L, NUNES R. Time-series prediction of wind speed using machine learning algorithms: A case study Osorio wind farm, Brazil[J]. Applied Energy, 2018, 224:550-566.
[4] MORENO S R, LEANDRO D S C. Wind speed forecasting approach based on Singular Spectrum Analysis and Adaptive Neuro Fuzzy Inference System[J]. Renewable Energy, 2018, 126:736-754.
[5] 张驰. 风电场短期风速预测若干问题研究[D]. 南京:东南大学, 2017.
[5] ZHANG Chi. Research on some issues of short-term wind speed forecasting for wind farms[D]. Nanjing: Southeast University, 2017.
[6] JAHANGIR H, GOLKAR M A, ALHAMELI F, et al. Short-term wind speed forecasting framework based on stacked denoising auto-encoders with rough ANN[J]. Sustainable Energy Technologies and Assessments, 2020, 38:100601.
[7] SANTHOSH M, VENKAIAH C, KUMAR D M V. Ensemble empirical mode decomposition based adaptive wavelet neural network method for wind speed prediction[J]. Energy Conversion and Management, 2018, 168:482-493.
[8] 范曼萍, 周冬. 基于改进粒子群优化LS-SVM的短期风速预测[J]. 电力学报, 2020, 35(2):123-128.
[8] FAN Manping, ZHOU Dong. Shortterm wind speed prediction based on improved particle swarm optimization LS-SVM[J]. Journal of Electric Power, 2020, 35(2):123-128.
[9] HOCHREITER S, SCHMIDHUBER J. Long short-term memory[J]. Neural Computation, 1997, 9(8):1735-1780.
[10] TRAPPENBERG T, OUYANG J, BACK A. Input variable selection: Mutual information and linear mixing measures[J]. IEEE Transactions on Knowledge and Data Engineering, 2006, 18(1):37-46.
[11] LIU H, MI X W, LI Y F. Smart multi-step deep learning model for wind speed forecasting based on variational mode decomposition, singular spectrum analysis, LSTM network and ELM[J]. Energy Conversion and Management, 2018, 159:54-64.
[12] PEDREGUSA F, VAROQUAUX G, GRAMFORT A, et al. Scikit-learn: Machine learning in python[J]. Journal of Machine Learning Research, 2011, 12:2825-2830.
[13] PASZKE A, GROSS S, MASSA F, et al. Pytorch: An imperative style, high-performance deep learning library[C]// 33rd Conference on Neural Information Processing Systems (NeurIPS 2019). Vancouver, Cana-da: NeurIPS, 2019: 8026-8037.
[14] CHAI T, DRAXLER R R. Root mean square error (RMSE) or mean absolute error (MAE)?—Arguments against avoiding RMSE in the literature[J]. Geoscientific Model Development, 2014, 7(3):1247-1250.
[15] QUININO R C, REIS E A, BESSEGATO L F. Using the coefficient of determination R2 to test the significance of multiple linear regression[J]. Teaching Statistics, 2013, 35(2):84-88.
文章导航

/