上海莲花路浅部土层超固结特性试验研究

展开
  • 1.上海交通大学土木工程系,上海  200240
    2.济南轨道交通集团有限公司,济南  250101
武朝军(1985-),男,山东省莘县人,博士生,研究方向为上海浅部土体沉积历史以及软黏土的岩土工程特性.|叶冠林(联系人),男,副教授,电话(Tel.):021-34204833; E-mail:ygl@sjtu.edu.cn.

收稿日期: 2015-04-30

  网络出版日期: 2021-06-04

基金资助

国家自然科学基金(41372284);上海市科学技术委员会科研项目(12231200703);山东省自然科学基金(ZR2014EEM029);山东省住房和城乡建设厅科技项目计划(KY053);住房和城乡建设部科技项目计划(2015-K5-004)

Experimental Study of Overconsolidation Behavior of the Upper Shanghai Clays in Lianhua Road

Expand
  • 1.Department of Civil Engineering, Shanghai Jiaotong University, Shanghai 200240, China
    2.Ji'nan Rail Transit Group Co. Ltd. , Ji'nan 250101, China

Received date: 2015-04-30

  Online published: 2021-06-04

摘要

对上海②~⑥层原状土样进行了一系列室内试验,得到了整个浅层土基本物理参数,并由标准固结和三轴试验综合分析了上海浅部土层超固结度(OCR)的分布规律.研究认为上海浅层黏土天然含水率、初始孔隙比、液塑限、液性指数与塑性指数沿深度具有与OCR相反的变化规律.上海浅部土层的弱结构性导致一维压缩曲线无明显拐点,引用Becker能量法得到:②层土的OCR最大,达到8.0左右,之后急剧减小;③、④和⑤层土的OCR=1.15~1.40;⑥层土的OCR>2.0.三轴排水试验结果体现了浅部各土层超固结性的差异,与标准固结试验的结果基本一致.这种固结试验与三轴试验相结合的研究方法为进一步准确得到原位土体尤其是弱结构性土的应力历史提供了新的途径.

本文引用格式

武朝军, 叶冠林, 王建华 . 上海莲花路浅部土层超固结特性试验研究[J]. 上海交通大学学报, 2016 , 50(03) : 331 -335 . DOI: 10.16183/j.cnki.jsjtu.2016.03.003

Abstract

A series of laboratory tests were conducted of intacted samples of the 2nd to 6 th Shanghai clays to investigate fundamental physical properties of successive upper clay layers in Shanghai, and overconsolidation behaviors were studied through a series of standard oedometer tests and triaxial consolidated drained compression tests. Natural water content, initial void ratio, liquid/plastic limit and liquid/plastic index were found to have similar trends of variations with depth change. Due to gentle curvature of the compression curve over the preconsolidation pressure range, the work method proposed by Becker was cited to obtain the yield pressure in oedometer test, which showed that the overconsolidated ratio (OCR) of the 2nd and 6th layers were larger than 2, while those of the 3rd and 4th were about 1.15, and that of the 5th were closed to 1.40. Different characteristics of stress-strain curves in drained triaxial tests of the 2nd to 6th Shanghai clays reflect the distribution of OCR obtained in the oedometer test. The unite study method composed by oedometer and triaxial tests will contribute to further understanding of the overconsolidated behaviour of soft clays with weak structure.

参考文献

[1] 刘映晶, 陈锦剑, 王建华, 等. 逆作土方通道式施工工艺对基坑变形的影响[J]. 上海交通大学学报, 2012, 46(1): 89-93.
[1] LIU Yingjing, CHEN Jinjian, WANG Jianhua, et al. Effect of channel-type transport technology of earthwork on the deformation of top-down deep foundation pit[J]. Journal of Shanghai Jiaotong University, 2012, 46(1): 89-93.
[2] 魏道垛, 胡中雄. 上海浅层地基土的前期固结压力及有关压缩性参数的试验研究[J]. 岩土工程学报, 1980, 2(4): 13-22.
[2] WEI Daoduo, HU Zhongxiong. Experimental study of preconsolidation pressure and compressibility parameters of Shanghai subsoil[J]. Chinese Journal of Geotechnical Engineering, 1980, 2(4): 13-22.
[3] 袁聚云, 杨熙章, 赵锡宏, 等. 上海软土各向异性性状的试验研究[J]. 大坝观测与土工测试, 1996, 20(2): 10-14.
[3] YUAN Juyun, YANG Xizhang, ZHAO Xihong, et al. Experimental study on anisotropic characterisic of Shanghai soft clay[J]. Dam Observation and Geotechnical Tests, 1996, 20(2): 10-14.
[4] 孙德安, 陈波, 周科. 重塑上海软土的压缩和剪切变形特性试验研究[J]. 岩土力学, 2010, 31(5): 1389-1394.
[4] SUN Dean, CHEN Bo, ZHOU Ke. Experimental study of compression and shear deformation characteristics of remolded Shanghai soft clay[J]. Rock and Soil Mechanics, 2010, 31(5): 1389-1394.
[5] 吴宏伟, 李青, 刘国彬. 上海黏土一维压缩特性的试验研究[J]. 岩土工程学报, 2011, 33(4): 630-636.
[5] WU Hongwei, LI Qing, LIU Guobin. Characteristics of one-dimensional compressibility of Shanghai clay[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(4): 630-636.
[6] 汪中卫. 上海软土小应变刚度的高精度试验研究[J]. 城市道桥与防洪, 2012, 29(3): 160-162.
[6] WANG Zhongwei. Study on high-precision experiment of small strain rigidity of soft soil in Shanghai[J]. Urban Roads Bridges & Flood Control, 2012, 29(3): 160-162.
[7] 盛佳韧, 武朝军, 叶冠林, 等. 上海黏土强度特性真三轴试验研究[J]. 岩土力学, 2013, 34(1): 47-52.
[7] SHENG Jiaren, WU Chaojun, YE Guanlin, et al. Strength property of Shanghai clay in true triaxial tests[J]. Rock and Soil Mechanics, 2013, 34(1): 47-52.
[8] BECKER D E, CROOKS J H A, BEEN K, et al. Work as a criterion for determining in situ and yield stresses in clays[J]. Canadian Geotechnical Journal, 1987, 24(4): 549-564.
[9] WU C J, YE G L, ZHANG L L, et al. Depositional environment and geotechnical properties of Shanghai clay: A comparison with Ariake and Bangkok clays[J]. Bulletin of Engineering Geology and the Environment, 2015, 74(3): 717-732.
[10] 武朝军, 叶冠林, 王建华. 上海浅部土层压缩指数与天然含水率的关系[J]. 岩土力学, 2014, 35(11): 3184-3190.
[10] WU Chaojun, YE Guanlin, WANG Jianhua. Relationship of compression index with natural water content for Shanghai clay[J]. Rock and Soil Mechanics, 2014, 35(11): 3184-3190.
文章导航

/