三维正交机织复合材料翼子板多尺度可靠性优化设计
收稿日期: 2019-10-09
网络出版日期: 2021-06-01
基金资助
国家自然科学基金项目(11772191);国家自然科学基金重点项目(U1864211)
Multi-Scale Reliability-Based Design Optimization of Three-Dimensional Orthogonal Woven Composite Fender
Received date: 2019-10-09
Online published: 2021-06-01
三维正交机织复合材料具有优异的力学性能和抗分层能力,在汽车轻量化应用方面前景广阔. 以三维正交机织复合材料汽车翼子板为研究对象,基于多尺度仿真预测方法,建立复合材料弹性性能解析预测模型和翼子板宏观有限元模型. 同时针对材料和结构设计变量的不确定性,结合蒙特卡洛可靠性分析方法、Kriging代理模型和粒子群优化算法,实现复合材料翼子板多尺度可靠性优化设计. 结果表明:优化后的翼子板在满足结构刚度和可靠性要求的同时,达到了21.93%的轻量化效果.
关键词: 三维正交机织复合材料; 汽车翼子板; Kriging代理模型; 多尺度仿真; 可靠性优化设计
陶威, 刘钊, 许灿, 朱平 . 三维正交机织复合材料翼子板多尺度可靠性优化设计[J]. 上海交通大学学报, 2021 , 55(5) : 615 -623 . DOI: 10.16183/j.cnki.jsjtu.2019.283
Three-dimensional orthogonal woven composites have excellent mechanical properties and delamination resistance, which have a bright future in the application of automotive lightweight. A prediction model of elastic properties for three-dimensional orthogonal woven composites was established based on the analytical micromechanical method. The macro-scale performances of the fender were analyzed by using the finite element method. The Monte Carlo reliability analysis method, the Kriging surrogate mode, and the particle swarm optimization algorithm were adopted to conduct multi-scale reliability-based design optimization of a composite structure, which involves the uncertainties of material and structural design variables. The results show that the optimized fender meets the requirments of structural stiffness and reliability, and it also achieves a weight reduction of 21.93%.
[1] | 范子杰, 桂良进, 苏瑞意, 等. 汽车轻量化技术的研究与进展[J]. 汽车安全与节能学报, 2014, 5(1):1-16. |
[1] | FAN Zijie, GUI Liangjin, SU Ruiyi, et al. Research and development of automotive lightweight technology[J]. Journal of Automotive Safety and Energy, 2014, 5(1):1-16. |
[2] | 戎琦. 三维机织复合材料的织造技术[J]. 纤维复合材料, 2007, 24(1):31-33. |
[2] | RONG Qi. Weaving technology of 3D woven composites[J]. Fiber Composites, 2007, 24(1):31-33. |
[3] | JIA X W, XIA Z H, GU B H. Nonlinear numerical predictions of three-dimensional orthogonal woven composite under low-cycle tension using multiscale repeating unit cells[J]. International Journal of Da-mage Mechanics, 2015, 24(3):338-362. |
[4] | DAI S, CUNNINGHAM P R. Multi-scale damage modelling of 3D woven composites under uni-axial tension[J]. Composite Structures, 2016, 142:298-312. |
[5] | 朱国华, 成艾国, 王振, 等. 电动车轻量化复合材料车身骨架多尺度分析[J]. 机械工程学报, 2016, 52(6):145-152. |
[5] | ZHU Guohua, CHENG Aiguo, WANG Zhen, et al. Analysis of lightweight composite body structure for electrical vehicle using the multiscale approach[J]. Journal of Mechanical Engineering, 2016, 52(6):145-152. |
[6] | KIM D H, KIM H G, KIM H S. Design optimization and manufacture of hybrid glass/carbon fiber reinforced composite bumper beam for automobile vehicle[J]. Composite Structures, 2015, 131:742-752 |
[7] | FU X W, RICCI S, BISAGNI C. Minimum-weight design for three dimensional woven composite stiffened panels using neural networks and genetic algorithms[J]. Composite Structures, 2015, 134:708-715. |
[8] | 王庆, 卢家海, 刘钊, 等. 碳纤维增强复合材料汽车保险杠的轻量化设计[J]. 上海交通大学学报, 2017, 51(2):136-141. |
[8] | WANG Qing, LU Jiahai, LIU Zhao, et al. A lightweight design of carbon fiber reinforced plastic auto bumper[J]. Journal of Shanghai Jiao Tong University, 2017, 51(2):136-141. |
[9] | MESOGITIS T S, SKORDOS A A, LONG A C. Uncertainty in the manufacturing of fibrous thermosetting composites: A review[J]. Composites Part A: Applied Science and Manufacturing, 2014, 57:67-75. |
[10] | LIU Z, ZHU C, ZHU P, et al. Reliability-based design optimization of composite battery box based on modified particle swarm optimization algorithm[J]. Composite Structures, 2018, 204:239-255. |
[11] | CHEN X, WANG X J, QIU Z P, et al. A novel reliability-based two-level optimization method for composite laminated structures[J]. Composite Structures, 2018, 192:336-346. |
[12] | TAO W, LIU Z, ZHU P, et al. Multi-scale design of three dimensional woven composite automobile fender using modified particle swarm optimization algorithm[J]. Composite Structures, 2017, 181:73-83. |
[13] | JIN R C, CHEN W, SUDJIANTO A. An efficient algorithm for constructing optimal design of computer experiments[J]. Journal of Statistical Planning and Inference, 2005, 134(1):268-287. |
[14] | QUEIPO N V, HAFTKA R T, WEI S, et al. Surrogate-based analysis and optimization[J]. Progress in Aerospace Sciences, 2005, 41(1):1-28. |
[15] | KENNEDY J, EBERHART R. Particle swarm optimization [C]//International Conference on Neural Networks (ICNN). Perth, WA, Australia: IEEE, 1995: 1942-1948. |
/
〈 |
|
〉 |