波浪荷载引起不同埋深管线周围海床响应和液化分析

展开
  • 土木工程系, 上海 200240
张 琪(1990-),男,陕西省咸阳市人,助理研究员,主要从事海洋岩土工程方面的科研工作;E-mail: zhangqi33@sjtu.edu.cn.

收稿日期: 2019-12-04

  网络出版日期: 2021-06-01

基金资助

国家自然科学基金面上项目(51678360);上海市青年科技英才扬帆计划(20YF1418500)

Wave-Induced Seabed Response and Liquefaction Around Pipeline at Different Buried Depths

Expand
  • Department of Civil Engineering, Shanghai Jiao Tong University, Shanghai 200240, China

Received date: 2019-12-04

  Online published: 2021-06-01

摘要

为了研究波浪荷载引起海底管线周围海床的液化问题,以Biot方程的部分动力响应模型,即u-p模型为基础建立二维埋管海床数值模型,研究海底管线及其周围海床在波浪荷载作用下的动态响应问题,波浪荷载通过孔压边界施加到海床表面.在验证模型的基础上,研究埋管海床在波浪荷载作用下的响应与液化,分析不同管线埋深下海床土的孔压、竖向有效应力和液化范围的区别,并探讨波高、海床土渗透系数和饱和度等参数的影响.结果表明:管线埋深对周围海床土在波浪荷载作用下的响应和液化影响明显;管线的存在使得管线周围海床土的竖向有效应力出现应力集中现象;波高、海床土的渗透系数和饱和度对波浪引起管线周围海床土的响应影响明显.研究结果对海底管线在海洋环境中的安全稳定提供理论依据.

本文引用格式

张琪, 周香莲, 叶冠林 . 波浪荷载引起不同埋深管线周围海床响应和液化分析[J]. 上海交通大学学报, 2021 , 55(5) : 489 -496 . DOI: 10.16183/j.cnki.jsjtu.2019.349

Abstract

In order to study the liquefaction of the seabed around the pipeline under wave loading, a two-dimensional numerical model was established based on Biot’s partly dynamic equation (u-p model). The dynamic response of the seabed around the pipeline under wave loading was investigated in detail, and the wave loading was applied on the seabed surface through pore pressure boundary. Based on the validation of the numerical model, the response and liquefaction of the seabed around the pipeline under wave loading were studied. The pore pressure, vertical effect stress, and liquefaction range of the seabed at different pipeline buried depths were investigated and the effects of wave height, soil permeability, and saturation were discussed. The results show that the pipeline buried depth has significant effects on the response and liquefaction of seabed under wave loading. The pipeline induces the vertical effective stress concentration of seabed around the pipeline. The effects of wave height, soil permeability, and saturation on the seabed response under wave loading are significant. The results provide a theoretical basis for the safety and stability of submarine pipeline in marine environment.

参考文献

[1] 王小雯, 张建民, 李焯芬. 波浪作用下饱和砂质海床土体与管线相互作用规律研究[J]. 岩土力学, 2018, 39(7):2499-2508.
[1] WANG Xiaowen, ZHANG Jianmin, LI Chaofen. Wave-induced interaction of saturated sandy seabed with pipeline[J]. Rock and Soil Mechanics, 2018, 39(7):2499-2508.
[2] HSIAO S V, SHEMDIN O H. Interaction of ocean waves with a soft bottom[J]. Journal of Physical Oceanography, 1980, 10(4):605-610.
[3] MEI C C, LIU K F. A Bingham-Plastic Model for a muddy seabed under long waves[J]. Journal of Geophysical Research: Oceans, 1987, 92(C13):14581-14594.
[4] SLEATH J F A. Wave-induced pressures in beds of sand[J]. Journal of the Hydraulics Division, 1970, 96(2):367-378.
[5] BIOT M A. Mechanics of deformation and acoustic propagation in porous media[J]. Journal of Applied Physics, 1962, 33(4):1482-1498.
[6] ZIENKIEWICZ O C, CHANG C T, BETTESS P. Drained, undrained, consolidating and dynamic behaviour assumptions in soils[J]. Géotechnique, 1980, 30(4):385-395.
[7] ZEN K, YAMAZAKI H. Mechanism of wave-induced liquefaction and densification in seabed[J]. Soils and Foundations, 1990, 30(4):90-104.
[8] GATMIRI B. A simplified finite element analysis of wave-induced effective stresses and pore pressures in permeable sea beds[J]. Géotechnique, 1990, 40(1):15-30.
[9] JENG D S, CHA D H. Effects of dynamic soil behavior and wave non-linearity on the wave-induced pore pressure and effective stresses in porous seabed[J]. Ocean Engineering, 2003, 30(16):2065-2089.
[10] 段伦良, 郑东生, 王少华, 等. 波浪荷载作用下各向异性海床瞬态液化研究[J]. 西南交通大学学报, 2019, 54(4):741-747.
[10] DUAN Lunliang, ZHENG Dongsheng, WANG Shao-hua, et al. Numerical study on wave-induced oscillatory liquefaction in anisotropic seabed[J]. Journal of Southwest Jiaotong University, 2019, 54(4):741-747.
[11] 王国才, 刘倩倩, 张勇. 波浪荷载作用下海床的液化及参数分析[J]. 浙江工业大学学报, 2019, 47(2):135-139.
[11] WANG Guocai, LIU Qianqian, ZHANG Yong. Momentary liquefaction and parametric analysis of seabed under wave loadings[J]. Journal of Zhejiang Univer-sity of Technology, 2019, 47(2):135-139.
[12] JENG D S, CHENG L. Wave-induced seabed instability around a buried pipeline in a poro-elastic seabed[J]. Ocean Engineering, 2000, 27(2):127-146.
[13] WANG X, JENG D S, LIN Y S. Effects of a cover layer on wave-induced pore pressure around a buried pipe in an anisotropic seabed[J]. Ocean Engineering, 2000, 27(8):823-839.
[14] 文锋, 王建华. 波浪-流作用下分层海床稳定性分析[J]. 上海交通大学学报, 2014, 48(6):793-797.
[14] WEN Feng, WANG Jianhua. Stability analysis of layered seabed under wave and current loading[J]. Journal of Shanghai Jiao Tong University, 2014, 48(6):793-797.
[15] ZHOU C Y, LI G X, DONG P, et al. An experimental study of seabed responses around a marine pipeline under wave and current conditions[J]. Ocean Engineering, 2011, 38(1):226-234.
[16] 华莹, 周香莲, 张军. 随机波作用下埋管海床动态响应及液化研究[J]. 海洋通报, 2017, 36(6):644-651.
[16] HUA Ying, ZHOU Xianglian, ZHANG Jun. Numerical study of random wave induced seabed-pipeline response and liquefaction[J]. Marine Science Bulletin, 2017, 36(6):644-651.
[17] 栾茂田, 曲鹏, 杨庆, 等. 波浪引起的海底管线周围海床动力响应分析[J]. 岩石力学与工程学报, 2008, 27(4):789-795.
[17] LUAN Maotian, QU Peng, YANG Qing, et al. Wave-induced dynamic response of seabed around submarine pipeline[J]. Chinese Journal of Rock Mechanics and Engineering, 2008, 27(4):789-795.
[18] 邓海峰, 王忠涛, 刘鹏. 随机波浪作用下海底管线与海床的相互作用研究[J]. 水利与建筑工程学报, 2014, 12(4):43-49.
[18] DENG Haifeng, WANG Zhongtao, LIU Peng. Study on seabed-pipeline interaction under random wave loading[J]. Journal of Water Resources and Architectural Engineering, 2014, 12(4):43-49.
[19] ZHOU X L, ZHANG J, GUO J J, et al. Cnoidal wave induced seabed response around a buried pipeline[J]. Ocean Engineering, 2015, 101:118-130.
[20] ZHOU X L, JENG D S, YAN Y G, et al. Wave-induced multi-layered seabed response around a buried pipeline[J]. Ocean Engineering, 2013, 72:195-208.
[21] HSU J R C, JENG D S. Wave-induced soil response in an unsaturated anisotropic seabed of finite thickness[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 1994, 18(11):785-807.
文章导航

/