工业余热回收的耦合压缩-吸收式高温热泵循环
收稿日期: 2020-01-16
网络出版日期: 2021-04-30
基金资助
国家自然科学基金资助项目(51606124)
A Hybrid Compression-Absorption High Temperature Heat Pump Cycles for Industrial Waste Heat Recovery
Received date: 2020-01-16
Online published: 2021-04-30
针对常规吸收式热泵和压缩式热泵无法兼顾温升与效率的问题,本文提出采用热耦合压缩-吸收式热泵来达到高效高温输出的目的,并根据不同场景需求构建大温升型循环和高温输出型循环.采用R245fa和溴化锂-水溶液作为工质,针对100 ℃以上输出温度,利用Aspen Plus软件建立数学模型并对循环性能进行计算.研究结果显示:在采用大温升型循环回收30~40 ℃余热时,循环最优能效比(COP)可以达到2.58以上;在采用高温输出型循环回收60~70 ℃余热时,循环最优COP可以达到2.83;两种新循环在温升、输出温度和效率上比R245fa压缩式循环均有明显提升.
安美燕, 赵心蕊, 徐震原, 王如竹 . 工业余热回收的耦合压缩-吸收式高温热泵循环[J]. 上海交通大学学报, 2021 , 55(4) : 434 -443 . DOI: 10.16183/j.cnki.jsjtu.2020.023
Aimed at the problem that the conventional absorption heat pumps and compression heat pumps cannot take into account the temperature rise and efficiency, this paper proposes the use of a thermally-coupled hybrid compression-absorption heat pump to achieve high-efficiency and high-temperature output. To meet the demands of different scenarios, a large-temperature-lift cycle and a high-temperature-output cycle are constructed. R245fa and lithium bromide aqueous solution are used as working substance. For output temperature above 100℃, Aspen Plus software is used to establish a mathematical model to predict the cycle performance for calculation. The results show that the optimized coefficient of performance(COP) can be 2.58 or higher when the large-temperature-lift cycle is used to recover the waste heat at 30-40℃. When the high-temperature-output cycle is used to recycle waste heat at 60-70℃, the optimized COP of the cycle can reach 2.83. The cycles proposed are more advantageous than the R245fa compression cycle on temperature lift, output temperature, and efficiency.
Key words: waste heat; heat pump; compression; absorption; recovery; Aspen Plus software
[1] | WANG J Y, WANG Z, ZHOU D, et al. Key issues and novel optimization approaches of industrial waste heat recovery in district heating systems[J]. Energy, 2019, 188:116005. |
[2] | 何雅玲. 工业余热高效综合利用的重大共性基础问题研究[J]. 科学通报, 2016, 61(17):1856-1857. |
[2] | HE Yaling. Research on major common basic issues of efficient comprehensive utilization of industrial waste heat[J]. Chinese Science Bulletin, 2016, 61(17):1856-1857. |
[3] | 王如竹, 王丽伟, 蔡军, 等. 工业余热热泵及余热网络化利用的研究现状与发展趋势[J]. 制冷学报, 2017, 38(2):1-10. |
[3] | WANG Ruzhu, WANG Liwei, CAI Jun, et al. Research status and trends on industrial heat pump and network utilization of waste heat[J]. Journal of Refrigeration, 2017, 38(2):1-10. |
[4] | HIGASHI Y, HAYASAKA S, SHIRAI C, et al. Measurements of PρT properties, vapor pressures, saturated densities, and critical parameters for R 1234ze(Z) and R 245fa[J]. International Journal of Refrigeration, 2015, 52:100-108. |
[5] | 姚庆. 溴化锂吸收式制冷技术在回收低品位工业余热中的应用[J]. 石油和化工节能, 2005(5):89-93. |
[5] | YAO Qing. Application of LiBr absorption refrigeration technology in recycling low-grade industrial waste heat[J]. Petroleum & Chemical Energy Conversation, 2005(5):89-93. |
[6] | ZHOU Q, RADERMACHER R. Development of a vapor compression cycle with a solution circuit and desorber/absorber heat exchange[J]. International Journal of Refrigeration, 1997, 20(2):85-95. |
[7] | BERTSCH S S, GROLL E A. Two-stage air-source heat pump for residential heating and cooling applications in northern US climates[J]. International Journal of Refrigeration, 2008, 31(7):1282-1292. |
[8] | 魏茂林, 付林, 赵玺灵, 等. 燃煤烟气余热回收与减排一体化系统应用研究[J]. 工程热物理学报, 2017, 38(6):1157-1165. |
[8] | WEI Maolin, FU Lin, ZHAO Xiling, et al. Coal-fired boiler flue gas heat recovery system and its performance study[J]. Journal of Engineering Thermophysics, 2017, 38(6):1157-1165. |
[9] | 叶碧翠, 陈光明, 刘骏, 等. 新型两级开式吸收式热泵系统性能[J]. 化工学报, 2014, 65(Sup.2):248-255. |
[9] | YE Bicui, CHEN Guangming, LIU Jun, et al. A novel double-stage open absorption heat pump system[J]. CIESC Journal, 2014, 65(Sup.2):248-255. |
[10] | 刘晓琳. 吸收式热泵在余热回收中的应用研究[D]. 邯郸: 河北工程大学, 2016. |
[10] | LIU Xiaolin. The applied research on absorption heat pump in waste-heat recovery[D]. Handan, China: Hebei University of Engineering, 2016. |
[11] | 姜迎春, 韩巍. 利用低温烟气余热的吸收-压缩复合热泵系统[J]. 工程热物理学报, 2017, 38(6):1150-1156. |
[11] | JIANG Yingchun, HAN Wei. Absorption-compression heat pump system for recovering heat in low-temperature flue gas[J]. Journal of Engineering Thermophysics, 2017, 38(6):1150-1156. |
[12] | 刘长春, 姜迎春, 韩巍, 等. 集成吸收-压缩复合热泵的微燃机热电联产系统[J]. 科学通报, 2018, 63(16):1606-1614. |
[12] | LIU Changchun, JIANG Yingchun, HAN Wei, et al. Thermodynamic analysis of a micro turbine CHP system integrated with absorption-compression heat pump[J]. Chinese Science Bulletin, 2018, 63(16):1606-1614. |
[13] | JENSEN J K, MARKUSSEN W B, REINHOLDT L, et al. Exergoeconomic optimization of an ammonia-water hybrid absorption-compression heat pump for heat supply in a spray-drying facility[J]. International Journal of Energy and Environmental Engineering, 2015, 6(2):195-211. |
[14] | JENSEN J K, MARKUSSEN W B, REINHOLDT L, et al. On the development of high temperature ammonia-water hybrid absorption-compression heat pumps[J]. International Journal of Refrigeration, 2015, 58:79-89. |
[15] | SOMERS C, MORTAZAVI A, HWANG Y, et al. Modeling water/lithium bromide absorption chillers in ASPEN Plus[J]. Applied Energy, 2011, 88(11):4197-4205. |
[16] | BARBOUR E, MIGNARD D, DING Y L, et al. Adiabatic Compressed Air Energy Storage with packed bed thermal energy storage[J]. Applied Energy, 2015, 155:804-815. |
[17] | 王乐民, 陶乐仁, 杨丽辉. 吸气状态对压缩机效率影响的实验研究[J]. 压缩机技术, 2016(3):5-8. |
[17] | WANG Lemin, TAO Leren, YANG Lihui. Experimental study of the influence of suction conditions on compressor efficiency[J]. Compressor Technology, 2016(3):5-8. |
[18] | 程博, 高岩, 郭海豹, 等. 增压吸收对土壤源吸收式热泵性能影响的模拟分析[J]. 中国科技论文, 2016, 11(13):1492-1495. |
[18] | CHENG Bo, GAO Yan, GUO Haibao, et al. Simulation on the performance of ground source absorption heat pump with compression-assisted absorption[J]. China Sciencepaper, 2016, 11(13):1492-1495. |
[19] | 刘昭云. 蒸汽压缩式中高温热泵系统性能优化研究[D]. 天津: 天津大学, 2012. |
[19] | LIU Zhaoyun. Performance optimization of vapor compression moderate/high temperature heat pumps[D]. Tianjin: Tianjin University, 2012. |
[20] | 凌辰, 陈振乾, 施明恒. 太阳能驱动第二类吸收式热泵的模拟研究[J]. 东南大学学报(自然科学版), 2002, 32(1):90-94. |
[20] | LING Chen, CHEN Zhenqian, SHI Mingheng. Numerical simulation of an absorption heat pump (Type Ⅱ) driven by solar energy[J]. Journal of Southeast University(Natural Science Edition), 2002, 32(1):90-94. |
[21] | 吴伟, 石文星, 王宝龙, 等. 不同增压方式对空气源吸收式热泵性能影响的模拟分析[J]. 化工学报, 2013, 64(7):2360-2368. |
[21] | WU Wei, SHI Wenxing, WANG Baolong, et al. Simulation on performance of air source absorption heat pumps with different compression-assisted approaches[J]. CIESC Journal, 2013, 64(7):2360-2368. |
[22] | GOU X, FU Y, SHAH I A, et al. Research on a household dual heat source heat pump water heater with preheater based on ASPEN PLUS[J]. Energies, 2016, 9(12):1026. |
/
〈 |
|
〉 |