颗粒柱坍塌运动与堆积特性的研究综述

展开
  • 1.黄河水利科学研究院 水利部黄河泥沙重点实验室, 郑州 450003
    2.中国科学院 地理科学与资源研究所,北京 100101
    3.武汉大学 水资源与水电工程科学国家重点实验室, 武汉 430072
来志强(1990-),男,河南省安阳市人,工程师,现主要从事颗粒流理论及数值模拟研究工作

收稿日期: 2019-11-15

  网络出版日期: 2021-04-30

基金资助

国家自然科学基金青年科学基金项目(51909102);国家自然科学基金青年科学基金项目(51539004);中央级公益性科研院所基本科研业务费专项项目(HKY-JBYW-2019-02);第四届中国科协青年人才托举工程全额资助项目(201938);河南省博士后基金(020101070019);“十三五”国家重点研发计划项目(2017YFC0405204);“十三五”国家重点研发计划项目(2018YFC040720203)

Review of Movement and Accumulation Characteristics of Granular Column Collapse

Expand
  • 1. Key Laboratory of Yellow River Sediment of Ministry of Water Resources, Yellow River Institute of Hydraulic Research, Zhengzhou 450003, China
    2. Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
    3. State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan 430072, China

Received date: 2019-11-15

  Online published: 2021-04-30

摘要

通过总结国内外有关颗粒柱坍塌运动模型的研究成果,分析了颗粒柱初始空间形态特征、颗粒基本物理特性、模型边界及环境条件等因素对颗粒柱运动堆积特性的影响规律及作用机制.颗粒柱的运动距离和堆积高度与其初始宽高比之间存在显著的线性及幂函数关系,高、低颗粒柱坍塌运动模式和能耗机制差异显著.颗粒粒径、颗粒刚度、颗粒破碎与颗粒潮湿等因素对颗粒柱坍塌运动与堆积特性的影响规律已基本达成共识.不同的挡墙约束条件、由气体掺入导致的流态化现象以及水体环境影响下颗粒柱运动的堆积特征已有初步的研究成果.但是有关颗粒柱初始孔隙率、颗粒摩擦因数、挡墙摩擦因数对颗粒柱运动堆积特性影响的结论仍存在分歧.综观当前的研究成果,颗粒受力特性与运动机制存在内联关系,复杂颗粒形状、可侵蚀床面、颗粒密度和水动力条件等对颗粒柱坍塌运动与堆积特性的作用机理均是未来的研究重点.

本文引用格式

来志强, 江恩慧, 赵连军, 周伟, 田文祥, 马刚 . 颗粒柱坍塌运动与堆积特性的研究综述[J]. 上海交通大学学报, 2021 , 55(4) : 421 -433 . DOI: 10.16183/j.cnki.jsjtu.2019.329

Abstract

Domestic and foreign relevant literatures of granular column collapse movement models are concluded to analyze the effects of initial spatial characteristics, essential physical properties of particles, boundaries, and environment conditions of model on the movement and accumulation characteristics of granular columns. Besides, the related mechanisms of movement and accumulation characteristics of granular columns are also analyzed. Remarkable linear and power relationships exist between the movement distance and the aspect ratios of initial height to initial width. Similarly, remarkable linear and power relationships exist between accumulation height and aspect ratio of initial height to initial width. The movement patterns and energy consumption mechanisms for granular columns with large aspect ratios are significantly different from those with small aspect ratios. A consensus has basically been reached concerning the effect of particle size, particle stiffness, particle breakage, and wet particles on the movement and accumulation characteristics of granular columns. Some preliminary research achievements of the effects of different wall constraints, fluidization phenomenon due to the gas mixing and water condition on the movement and accumulation characteristics of granular column are obtained. However, there still exist disagreements in the conclusions about the influences of initial porosity of granular column, particle friction, and wall friction on the movement and accumulation characteristics of granular column. A review of the current research indicate that the research in the future will be focused on the relationship between forces acted on particles and movement regimes. The mechanisms of the effect of complex particle shape, surface, particle density, and water movement conditions on the movement and accumulation characteristics of granular column collapse will also be focused on in the future.

参考文献

[1] LAJEUNESSE E, MANGENEY-CASTELNAU A, VILOTTE J. Spreading of a granular mass on a horizontal plane[J]. Physics of Fluids, 2004, 16(7):2371-2381.
[2] LUBE G, HUPPERT H E, SPARKS R S J, et al. Axisymmetric collapses of granular columns[J]. Journal of Fluid Mechanics, 2004, 508:175-199.
[3] UTILI S, ZHAO T, HOULSBY G T. 3D DEM investigation of granular column collapse: Evaluation of debris motion and its destructive power[J]. Engineering Geology, 2015, 186:3-16.
[4] LANGLOIS V J, QUIQUEREZ A, ALLEMAND P. Collapse of a two-dimensional brittle granular column: Implications for understanding dynamic rock fragmentation in a landslide[J]. Journal of Geophysical Research: Earth Surface, 2015, 120(9):1866-1880.
[5] KERMANI E, QIU T, LI T. Simulation of collapse of granular columns using the discrete element method[J]. International Journal of Geomechanics, 2015, 15(6):04015004.
[6] LUBE G, HUPPERT H E, SPARKS R S J, et al. Collapses of two-dimensional granular columns[J]. Physical Review E, 2005, 72(4):041301.
[7] KERSWELL R R. Dam break with Coulomb friction: A model for granular slumping?[J]. Physics of Fluids, 2005, 17(5):057101.
[8] LARRIEU E, STARON L, HINCH E J. Raining into shallow water as a description of the collapse of a column of grains[J]. Journal of Fluid Mechanics, 2006, 554:259-270.
[9] LEE C, HUANG Z H, CHIEW Y. A three-dimensional continuum model incorporating static and kinetic effects for granular flows with applications to collapse of a two-dimensional granular column[J]. Physics of Fluids, 2015, 27(11):113303.
[10] DOYLE E E, HOGG A J, MADER H M, et al. Modeling dense pyroclastic basal flows from collapsing columns[J]. Geophysical Research Letters, 2008, 35(4):1-5.
[11] 费明龙, 徐小蓉, 孙其诚, 等. 颗粒介质固-流态转变的理论分析及实验研究[J]. 力学学报, 2016, 48(1):48-55.
[11] FEI Minglong, XU Xiaorong, SUN Qicheng, et al. Studies on the transition between solid- and fluid-like states of granular materials[J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(1):48-55.
[12] 孙倩, 彭天骥, 严安, 等. 密集颗粒流动的连续性方法应用研究[J]. 原子能科学技术, 2019, 53(12):2367-2374.
[12] SUN Qian, PENG Tianji, YAN An, et al. Application of continuum modeling of dense granular flow[J]. Atomic Energy Science and Technology, 2019, 53(12):2367-2374.
[13] HOLSAPPLE K A. Modeling granular material flows: The angle of repose, fluidization and the cliff collapse problem[J]. Planetary and Space Science, 2013, 82/83:11-26.
[14] LAGRÉE P Y, STARON L, POPINET S. The granular column collapse as a continuum: Validity of a two-dimensional Navier-Stokes model with a μ(I)-rheology[J]. Journal of Fluid Mechanics, 2011, 686(6):378-408.
[15] STARON L, HINCH E J. Study of the collapse of granular columns using two-dimensional discrete-grain simulation[J]. Journal of Fluid Mechanics, 2005, 545:1-27.
[16] GIROLAMI L, HERGAULT V, VINAY G, et al. A three-dimensional discrete-grain model for the simulation of dam-break rectangular collapses: Comparison between numerical results and experiments[J]. Granular Matter, 2012, 14(3):381-392.
[17] ZHANG X, KRABBENHOFT K, SHENG D C. Particle finite element analysis of the granular column collapse problem[J]. Granular Matter, 2014, 16(4):609-619.
[18] 张雪, 盛岱超. 一种模拟土体流动的连续体数值方法[J]. 岩土工程学报, 2016, 38(3):562-569.
[18] ZHANG Xue, SHENG Daichao. Continuum approach for modelling soil flow in geotechnical engineering[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(3):562-569.
[19] CROSTA G B, IMPOSIMATO S, RODDEMAN D. Numerical modeling of 2-D granular step collapse on erodible and nonerodible surface[J]. Journal of Geophysical Research: Earth Surface, 2009, 114(F3):1-19.
[20] WANG C, WANG Y Q, PENG C, et al. Two-fluid smoothed particle hydrodynamics simulation of submerged granular column collapse[J]. Mechanics Research Communications, 2017, 79:15-23.
[21] XU T B, JIN Y C. Modeling free-surface flows of granular column collapses using a mesh-free method[J]. Powder Technology, 2016, 291:20-34.
[22] FERN E J, SOGA K. The role of constitutive models in MPM simulations of granular column collapses[J]. Acta Geotechnica, 2016, 11(3):659-678.
[23] LAJEUNESSE E, MONNIER J B, HOMSY G M. Granular slumping on a horizontal surface[J]. Physics of Fluids, 2005, 17(10):103302.
[24] RANKINE W J M. On the stability of loose earth[J]. Proceedings of the Royal Society of London, 1857, 8:185-187.
[25] FERN E J, SOGA K. Granular column collapse of wet sand[J]. Procedia Engineering, 2017, 175:14-20.
[26] XU X R, SUN Q C, JIN F, et al. Measurements of velocity and pressure of a collapsing granular pile[J]. Powder Technology, 2016, 303:147-155.
[27] MAST C M, ARDUINO P, MACKENZIE-HELNWEIN P, et al. Simulating granular column collapse using the Material Point Method[J]. Acta Geotechnica, 2015, 10(1):101-116.
[28] ZENIT R. Computer simulations of the collapse of a granular column[J]. Physics of Fluids, 2005, 17(3):031703.
[29] RONDON L, POULIQUEN O, AUSSILLOUS P. Granular collapse in a fluid: Role of the initial volume fraction[J]. Physics of Fluids, 2011, 23(7):073301.
[30] YANG G C, JING L, KWOK C Y, et al. Pore-scale simulation of immersed granular collapse: Implications to submarine landslides[J]. Journal of Geophysical Research: Earth Surface, 2020, 125(1):1-26.
[31] LEE C H. Underwater collapse of a loosely packed granular column on an inclined plane: Effects of the Darcy number[J]. AIP Advances, 2019, 9(9):095046.
[32] PETERS J F, MUTHUSWAMY M, WIBOWO J, et al. Characterization of force chains in granular material[J]. Physical Review E, 2005, 72(4):041307.
[33] TORDESILLAS A, WALKER D M, LIN Q. Force cycles and force chains[J]. Physical Review E, 2010, 81(1):011302.
[34] ARTONI R, SANTOMASO A C, GABRIELI F, et al. Collapse of quasi-two-dimensional wet granular columns[J]. Physical Review E, 2013, 87(3):032205.
[35] GABRIELI F, ARTONI R, SANTOMASO A, et al. Discrete particle simulations and experiments on the collapse of wet granular columns[J]. Physics of Fluids, 2013, 25(10):103303.
[36] HUANG B L, WANG J, ZHANG Q, et al. Energy conversion and deposition behaviour in gravitational collapse of granular columns[J]. Journal of Mountain Science, 2020, 17(1):216-229.
[37] CABRERA M, ESTRADA N. Granular column collapse: Analysis of grain-size effects[J]. Physical Review E, 2019, 99(1):012905.
[38] PHILLIPS J C, HOGG A J, KERSWELL R R, et al. Enhanced mobility of granular mixtures of fine and coarse particles[J]. Earth and Planetary Science Letters, 2006, 246(3/4):466-480.
[39] DEGAETANO M, LACAZE L, PHILLIPS J C. The influence of localised size reorganisation on short-duration bidispersed granular flows[J]. The European Physical Journal E, 2013, 36(4):1-9.
[40] VALLEJO L E, ESPITIA J M, CAICEDO B. The influence of the fractal particle size distribution on the mobility of dry granular materials[J]. EPJ Web of Conferences, 2017, 140:03032.
[41] HOOKE R L B, IVERSON N R. Grain-size distribution in deforming subglacial tills: Role of grain fracture[J]. Geology, 1995, 23(1):57-60.
[42] LAI Z, VALLEJO L E, ZHOU W, et al. Collapse of granular columns with fractal particle size distribution: Implications for understanding the role of small particles in granular flows[J]. Geophysical Research Letters, 2017, 44(24):12181-12189.
[43] TAPIA-MCCLUNG H, ZENIT R. Computer simulations of the collapse of columns formed by elongated grains[J]. Physical Review E, 2012, 85(6):061304.
[44] 来志强, 周伟, 杨利福, 等. 基于离散单元法的溜砂坡堆积形态数值研究[J]. 中南大学学报(自然科学版), 2017, 48(7):1839-1848.
[44] LAI Zhiqiang, ZHOU Wei, YANG Lifu, et al. Numerical study of accumulation state for sand-sliding slope based on distinct element method[J]. Journal of Central South University (Science and Technology), 2017, 48(7):1839-1848.
[45] 李鹏鹏, 周伟, 熊美林, 等. 复杂形状颗粒DEM模拟及其对宏观力学响应影响研究[J]. 武汉大学学报(工学版), 2018, 51(6):478-486.
[45] LI Pengpeng, ZHOU Wei, XIONG Meilin, et al. Study of DEM modeling of irregular shaped particle and its influence on macromechanical response[J]. Engineering Journal of Wuhan University, 2018, 51(6):478-486.
[46] OWEN P J, CLEARY P W, MÉRIAUX C. Quasi-static fall of planar granular columns: Comparison of 2D and 3D discrete element modelling with laboratory experiments[J]. Geomechanics and Geoengineering, 2009, 4(1):55-77.
[47] TREPANIER M, FRANKLIN S V. Column collapse of granular rods[J]. Physical Review E, 2010, 82(1):011308.
[48] 张成功, 尹振宇, 吴则祥, 等. 颗粒形状对粒状材料圆柱塌落影响的三维离散元模拟[J]. 岩土力学, 2019, 40(3):1197-1203.
[48] ZHANG Chenggong, YIN Zhenyu, WU Zexiang, et al. Three-dimensional discrete element simulation of influence of particle shape on granular column collapse[J]. Rock and Soil Mechanics, 2019, 40(3):1197-1203.
[49] CLEARY P W, FRANK M . Three-dimensional discrete element simulation of axi-symmetric collapses of granular columns[EB/OL].(2006-06-22) [2019-09-09]. https://www.researchgate.net/profile/Paul_Cleary2/publication/228530783_Three-Dimensional_Discrete_Element_Simulation_of_Axi-symmetric_Collapses_of_Granular_Columns/links/0c96053c3a9e9dfb82000000/Three-Dimensional-Discrete-Element-Simulation-of-Axi-symmetric-Collapses-of-Granular-Columns.pdf.
[50] LO C Y, BOLTON M, CHENG Y P. Discrete element simulation of granular column collapse[C]//AIP Conference Proceedings. 2009, 1145(1):627-630.
[51] STARON L, HINCH E J. The spreading of a granular mass: Role of grain properties and initial conditions[J]. Granular Matter, 2007, 9(3/4):205-217.
[52] JING L, YANG G C, KWOK C Y, et al. Dynamics and scaling laws of underwater granular collapse with varying aspect ratios[J]. Physical Review E, 2018, 98(4):042901.
[53] DAVIES T R, MCSAVENEY M J. The role of rock fragmentation in the motion of large landslides[J]. Engineering Geology, 2009, 109(1/2):67-79.
[54] 陈兴, 马刚, 周伟, 等. 无序性对脆性材料冲击破碎的影响[J]. 物理学报, 2018, 67(14):219-228.
[54] CHEN Xing, MA Gang, ZHOU Wei, et al. Effects of material disorder on impact fragmentation of brittle spheres[J]. Acta Physica Sinica, 2018, 67(14):219-228.
[55] SANTOMASO A C, VOLPATO S, GABRIELI F. Collapse and runout of granular columns in pendular state[J]. Physics of Fluids, 2018, 30(6):063301.
[56] BOUGOUIN A, LACAZE L, BONOMETTI T. Collapse of a liquid-saturated granular column on a horizontal plane[J]. Physical Review Fluids, 2019, 4(12):124306.
[57] MÉRIAUX C. Two dimensional fall of granular columns controlled by slow horizontal withdrawal of a retaining wall[J]. Physics of Fluids, 2006, 18(9):093301.
[58] ZHU H W, FENG Y D, LU D F, et al. Dynamics of quasi-static collapse process of a binary granular column[J]. Powder Technology, 2018, 339:970-973.
[59] KERMANI E, QIU T. Simulation of quasi-static axisymmetric collapse of granular columns using smoothed particle hydrodynamics and discrete element methods[J]. Acta Geotechnica, 2020, 15(2):423-437.
[60] GIROLAMI L, WACHS A, VINAY G. Unchannelized dam-break flows: Effects of the lateral spreading on the flow dynamics[J]. Physics of Fluids, 2013, 25(4):043306.
[61] BALMFORTH N J, KERSWELL R R. Granular collapse in two dimensions[J]. Journal of Fluid Mechanics, 2005, 538:399-428.
[62] LACAZE L, PHILLIPS J C, KERSWELL R R. Planar collapse of a granular column: Experiments and discrete element simulations[J]. Physics of Fluids, 2008, 20(6):063302.
[63] WARNETT J M, DENISSENKO P, THOMAS P J, et al. Collapse of a granular column under rotation[J]. Powder Technology, 2014, 262:249-256.
[64] WARNETT J M, DENISSENKO P, THOMAS P J, et al. Scalings of axisymmetric granular column collapse[J]. Granular Matter, 2014, 16(1):115-124.
[65] NIKOOEI M, MANZARI M T. Studying effect of entrainment on dynamics of debris flows using numerical simulation[J]. Computers & Geosciences, 2020, 134:104337.
[66] ROCHE O, ATTALI M, MANGENEY A, et al. On the run-out distance of geophysical gravitational flows: Insight from fluidized granular collapse experiments[J]. Earth and Planetary Science Letters, 2011, 311(3/4):375-385.
[67] 景路, 郭颂怡, 赵涛. 基于流体动力学-离散单元耦合算法的海底滑坡动力学分析[J]. 岩土力学, 2019, 40(1):388-394.
[67] JING Lu, KWOK Chungyee, ZHAO Tao. Understanding dynamics of submarine landslide with coupled CFD-DEM[J]. Rock and Soil Mechanics, 2019, 40(1):388-394.
[68] JING L, YANG G C, KWOK C Y, et al. Flow regimes and dynamic similarity of immersed granular collapse: A CFD-DEM investigation[J]. Powder Technology, 2019, 345:532-543.
文章导航

/