不同温度下的乙烯-三氟氯乙烯共聚物薄膜单轴拉伸试验
收稿日期: 2019-10-30
网络出版日期: 2021-04-30
基金资助
国家自然科学基金(51708345);国家自然科学基金(51778362);国家自然科学基金(51478264);中国博士后科学基金(2017M610253)
Test of Uniaxial Tensile Mechanical Properties of ECTFE Foils at Various Temperatures
Received date: 2019-10-30
Online published: 2021-04-30
对厚度为250 μm的乙烯-三氟氯乙烯共聚物(ECTFE) 薄膜进行了单轴拉伸试验,考虑了不同的低-高温度 (分别为-50、-40、-30、-20、-10、0、10、20、30、40、50、60、70及80 ℃) 效应,试件截取方向为机器方向.得到了ECTFE薄膜在不同温度下的拉伸应力-应变曲线,通过分析得到了弹性模量、屈服强度、屈服应变、冷拉应力、抗拉强度、断裂延伸率等力学参数及其随温度的变化规律.结果表明:随着温度的降低,应力-应变曲线整体向上抬升,屈服强度、拉伸强度、冷拉应力和弹性模量均增大,断裂延伸率和韧性均减小.在不同温度(-50~80 ℃)下,弹性模量的差值可达到93%,屈服强度的差值可达到89%,温度变化对ECTFE薄膜力学性能的影响显著.得出了主要力学参数和温度变化的拟合公式,可用于判断ECTFE薄膜在不同温度下的力学性能.
关键词: 乙烯-三氟氯乙烯共聚物薄膜; 低-高温度环境; 单轴拉伸试验; 弹性模量; 屈服强度
刘昶江, 赵兵, 陈务军 . 不同温度下的乙烯-三氟氯乙烯共聚物薄膜单轴拉伸试验[J]. 上海交通大学学报, 2021 , 55(4) : 387 -393 . DOI: 10.16183/j.cnki.jsjtu.2019.317
Uniaxial tensile tests of ethylene-chloro-tri-fluoro-ethylene (ECTFE) foils were conducted at a thickness of 250 μm and various low and high temperatures (-50, -40, -30, -20, -10, 0, 10, 20, 30, 40, 50, 60, 70, and 80 ℃). The specimens were fabricated according to the machine direction (MD). The tensile stress-strain curves of the foils at various temperatures were obtained. According to the variation discipline with temperature, several parameters such as elastic modulus, yield stress, yield strain, cold drawing stress, tensile strength, and tensile strain at break were subsequently analyzed and calculated. The results show that with the elevation of the stress-strain curves, the yield strength, tensile strength, cold drawing stress, and elastic modulus increase, but the strain at break and toughness decrease when the temperature decreases. At a wide range of temperatures from -50 ℃ to 80 ℃, the difference of elastic modulus can increase up to 93%, with a yield stress of 89%, which reflects the great sensitivity of ECTFE to temperatures. The fitting formulas of main mechanical parameters are also obtained, which can be used to predict the mechanical properties of ECTFE foils at various temperatures.
[1] | 王文贵, 徐平先, 杨涛. 乙烯-三氟氯乙烯共聚物薄膜的研究[J]. 塑料工业, 2010, 38(Sup.l):64-92. |
[1] | WANG Wengui, XU Pingxian, YANG Tao. Researching of ethylene chlorotri fluoro ethylene foils[J]. China Plastics Industry, 2010, 38(Sup.l):64-92. |
[2] | 陈务军, 刘昶江, 赵兵. 不同拉伸速率下的 ECTFE 薄膜单轴拉伸试验[J]. 天津大学学报: 自然科学与工程技术版, 2019, 52(A02):16-22. |
[2] | CHEN Wujun, LIU Changjiang, ZHAO Bing. Experiment and analysis on uniaxial tensile mechanical properties of ectfe foils under different strain rates[J]. Journal of Tianjin University (Science and Technology), 2019, 52(A02):16-22. |
[3] | 陈务军. 膜结构工程设计[M]. 北京: 中国建筑工业出版社, 2005. |
[3] | CHEN Wujun. Design of Membrane Structure Engineering[M]. Beijing: China Architecture & Building Press, 2005. |
[4] | 赵兵. ETFE薄膜材料性能与双层气枕结构试验研究[D]. 上海: 上海交通大学, 2012. |
[4] | ZHAO Bing. Experimental study on material properties and double-layer of etfe foil[D]. Shanghai: Shanghai Jiao Tong University, 2012. |
[5] | HU J H, CHEN W J, ZHAO B, et al. Buildings with ETFE foils: A review on material properties, architectural performance and structural behavior[J]. Construction and Building Materials, 2017, 131:411-422. |
[6] | MORITZ K. ETFE-folie als tragelement[D]. München: Technische Universität München, 2007. |
[7] | GALLIOT C, LUCHSINGER R H. Uniaxial and biaxial mechanical properties of ETFE foils[J]. Polymer Testing, 2011, 30(4):356-365. |
[8] | HU J H, CHEN W J, ZHAO B, et al. Uniaxial tensile mechanical properties and model parameters determination of ethylene tetrafluoroethylene (ETFE) foils[J]. Construction and Building Materials, 2015, 75:200-207. |
[9] | HU J H, LI Y P, CHEN W J, et al. Effects of temperature and stress on creep properties of ethylene tetrafluoroethylene (ETFE) foils for transparent buildings[J]. Polymer Testing, 2017, 59:268-276. |
[10] | ZHAO B, DONG L T, CHEN W J, et al. Mechanical properties and structural performance of ETFE (ethylene-tetrafluoroethylene) cushion structures at low temperatures[J]. Engineering Structures, 2017, 136:420-429. |
[11] | 吴明儿, 刘建明, 慕仝, 等. ETFE薄膜单向拉伸性能[J]. 建筑材料学报, 2008, 11(2):241-247. |
[11] | WU Ming’er, LIU Jianming, MU Tong, et al. Uniaxial tensile properties of ETFE foils[J]. Journal of Building Materials, 2008, 11(2):241-247. |
[12] | 赵兵, 陈务军, 胡建辉, 等. 基于平面裁切的三角形乙烯-四氟乙烯气枕成形试验及数值模拟[J]. 上海交通大学学报, 2016, 50(3):377-383. |
[12] | ZHAO Bing, CHEN Wujun, HU Jianhui, et al. Experimental and numerical investigations of form-development of ethylene-tetrafluoroethylene cushion based on flat-patterning[J]. Journal of Shanghai Jiao Tong University, 2016, 50(3):377-383. |
[13] | ZHAO B, HU J H, CHEN W J, et al. Photothermal performance of an amorphous silicon photovoltaic panel integrated in a membrane structure[J]. Journal of Physics D: Applied Physics, 2016, 49(39):395601. |
[14] | 中国国家标准化管理委员会. 塑料拉伸性能的测定:GB/T 1040.1-2006[S]. 北京: 中国标准出版社, 2006. |
[14] | Standardization Administration of the People’s Republic of China. Plastics-determination of tensile properties:GB/T 1040.1-2006[S]. Beijing: China Standard Press, 2006. |
[15] | MCCRUM N G, BUCKLEY C P, BUCKNALL C B. Principles of polymer engineering[M]. New York,USA: Oxford University Press Inc., 1988. |
[16] | ARGON A S. A theory for the low-temperature plastic deformation of glassy polymers[J]. Philosophical Magazine, 1973, 28(4):839-865. |
/
〈 |
|
〉 |