三叶片H型垂直轴风力机风振与减振研究
收稿日期: 2020-03-02
网络出版日期: 2021-04-30
基金资助
国家自然科学基金(51679139);国家自然科学基金(51879160);上海市教育委员会科研创新计划自然科学重大项目(2019-01-07-00-02-E00066);上海市自然科学基金(18ZR1418000);上海市高校特聘教授东方学者岗位计划(ZXDF010037);上海市“曙光学者”计划;上海市国际科技合作基金(18290710600);上海市国际科技合作基金(18160744000)
Wind Vibration and Vibration Reduction of a H-Rotor Type Three-Bladed Vertical Axis Wind Turbine
Received date: 2020-03-02
Online published: 2021-04-30
针对三叶片H型垂直轴风机风振与减振问题,基于计算流体动力学(CFD)方法,采用数值方法模拟获得风机在转动周期内的叶片风压分布.将风压力时程荷载施加于风力机叶片表面,分析风机结构风振响应.在风力机不同位置处分别布置阻尼器,并数值模拟阻尼器耗能减振能力.结果表明:在垂直轴风力机主轴与支杆连接处布置阻尼器可降低结构位移响应,总位移最大降幅达44%.阻尼器位置与结构位移降低率密切相关,在近风机叶片顶端连杆处布置阻尼器,结构最大位移发生在风机叶片底端.在近风机叶片底端连杆处布置阻尼器,最大位移则发生在风机叶片顶端,下降达40.7%.研究成果可为垂直轴风力机减振研究提供技术参考.
杨梦姚, 毛璐璐, 韩兆龙, 周岱, 雷航, 曹宇 . 三叶片H型垂直轴风力机风振与减振研究[J]. 上海交通大学学报, 2021 , 55(4) : 347 -356 . DOI: 10.16183/j.cnki.jsjtu.2020.054
Aimed at the wind-induced response and vibration reduction of an H-rotor type three-bladed vertical axis wind turbine (VAWT), and based on computational fluid dynamics (CFD) method, a numerical simulation is conducted to obtain the blade wind pressure distribution during the rotation period. Then, the wind pressure obtained is applied to the surface of the blades to analyze the wind vibration response of the VAWT. Dampers are arranged at different positions of the VAWT to simulate the vibration reduction capacity. The results show that applying the damper at the connection between the main shaft and the support rod of VAWT could reduce the displacement response of the structure to a certain extent and the maximum drop would reach 44%. Furthermore, the displacement reduction rate of the structure is related to the position of the damper. If a damper is arranged near the top end of the blade, the maximum displacement of the structure would occur at the bottom of the blade. However, if a damper is arranged near the bottom end of the blade, the maximum displacement of the structure would occur at the top of the blade and the maximum drop would reach 40.7%. The results would provide technical reference for research on the vibration reduction of VAWT structures.
[1] | 舟丹. 全球十大风电国家的装机容量[J]. 中外能, 2019, 24(7):82. |
[1] | ZHOU Dan. Installed capacity of ten wind power countries in the world[J]. Sino-Global Energy, 2019, 24(7):82. |
[2] | LEI H, SU J, BAO Y, et al. Investigation of wake characteristics for the offshore floating vertical axis wind turbines in pitch and surge motions of platforms[J]. Energy, 2019, 166:471-489. |
[3] | 金浩, 胡以怀, 冯是全. 垂直轴风力机在风力发电中的应用现状及展望[J]. 环境工程, 2015, 33(Sup.1):1033-1038. |
[3] | JIN Hao, HU Yihuai, FENG Shiquan. Current situation and prospect on vertical axis wind turbine in wind power generation[J]. Environmental Engineering, 2015, 33(Sup.1):1033-1038. |
[4] | 王磊. 海上风电机组系统动力学建模及仿真分析研究[D]. 重庆: 重庆大学, 2011. |
[4] | WANG Lei. Study on systematic dynamic model and simulation for offshore wind turbine[D]. Chongqing: Chongqing University, 2011. |
[5] | 任年鑫. 海上风力机气动特性及新型浮式系统[D]. 哈尔滨: 哈尔滨工业大学, 2011. |
[5] | REN Nianxin. Offshore wind turbine aerodynamic performance and novel floating system[D]. Harbin: Harbin Institute of Technology, 2011. |
[6] | 孙科. 竖轴H型叶轮及导流罩流体动力性能数值模拟[D]. 哈尔滨: 哈尔滨工程大学, 2008. |
[6] | SUN Ke. Numerical simulation on fluid dynamic performance of H-shaped vertical axis turbine and duct[D]. Harbin: Harbin Engineering University, 2008. |
[7] | 孙阳. 基于CFD方法的竖轴叶轮性能模拟及翼型优化[D]. 哈尔滨: 哈尔滨工程大学, 2009. |
[7] | SUN Yang. Capability simulation and airfoil optimization of vertical-axis turbine based on CFD method[D]. Harbin: Harbin Engineering University, 2009. |
[8] | 潘博, 齐世强, 许金泉. 垂直轴风机的结构受力分析及其优化[J]. 力学季刊, 2018, 39(3):652-661. |
[8] | PAN Bo, QI Shiqiang, XU Jinquan. Mechanical analysis and optimization of structures in vertical wind turbine[J]. Chinese Quarterly of Mechanics, 2018, 39(3):652-661. |
[9] | CAMPOS A, MOLINS C, TRUBAT P, et al. A 3D FEM model for floating wind turbines support structures[J]. Energy Procedia, 2017, 137:177-185. |
[10] | 刘保文, 袁爱民, 曾文彬. 纵向阻尼器对大跨度斜拉桥桥塔的抗震性能影响分析[J]. 合肥工业大学学报(自然科学版), 2019, 42(7):965-968. |
[10] | LIU Baowen, YUAN Aimin, ZENG Wenbin. Effect of longitudinal damper on seismic performance of long-span cable-stayed bridge tower[J]. Journal of Hefei University of Technology (Natural Science), 2019, 42(7):965-968. |
[11] | 周云, 卢德辉, 龚晨, 等. 昆明某高层建筑消能减震设计[J]. 建筑结构, 2019, 49(7):116-121. |
[11] | ZHOU Yun, LU Dehui, GONG Chen, et al. Energy dissipation design for a high-rise building in Kunming[J]. Building Structure, 2019, 49(7):116-121. |
[12] | 叶旺盛. 垂直轴风力机锥齿轮式变桨距结构的优化研究[D]. 兰州: 兰州理工大学, 2011. |
[12] | YE Wangsheng. The cone gear pitch structure optimal design of vertical axis wind turbine[D]. Lanzhou: Lanzhou University of Technology, 2011. |
[13] | 张婷婷, 王红霞, 代泽兵. 垂直轴风力机主轴结构优化设计[J]. 华东电力, 2008, 36(10):134-137. |
[13] | ZHANG Tingting, WANG Hongxia, DAI Zebing. Structure optimization design for cylindrical vertical-axis wind turbines[J]. East China Electric Power, 2008, 36(10):134-137. |
[14] | 吴鸿鑫, 柯世堂, 王飞天. 基于CFD与LS-DYNA耦合技术的风致冷却塔倒塌破坏分析[C]//陆新征.第28届全国结构工程学术会议论文集(第I册). 北京:工程力学杂志社, 2019: 307-310. |
[14] | WU Hongxin, KE Shitang, WANG Tianfei. Collapse and failure analysis of wind-induced cooling tower based on CFD and LS-DYNA coupling technology[C]//LU Xinzheng. Proceedings of the 28 th National Conference on Structural Engineering(I). Beijing: Engineering Mechanics, 2019: 307-310. |
[15] | 张建, 杨庆山. 基于标准k-ε模型的平衡大气边界层模拟[J]. 空气动力学学报, 2009, 27(6):729-735. |
[15] | ZHANG Jian, YANG Qingshan. Application of standard k-ε model to simulate the equilibrium ABL[J]. Acta Aerodynamica Sinica, 2009, 27(6):729-735. |
[16] | LI Q A, MAEDA T, KAMADA Y, et al. Study on power performance for straight-bladed vertical axis wind turbine by field and wind tunnel test[J]. Renewable Energy, 2016, 90:291-300. |
[17] | ZHANG L X, LIANG Y B, LIU X H, et al. Aerodynamic performance prediction of straight-bladed vertical axis wind turbine based on CFD[J]. Advances in Mechanical Engineering, 2013, 5:905379. |
[18] | 付慧. 小型风力机叶片建模及其双向耦合仿真分析[D]. 西安: 西安理工大学, 2018. |
[18] | FU Hui. Modeling of small wind turbine blades and its bidirectional coupling simulation analysis[D]. Xi'an: Xi'an University ofTechnology, 2018. |
[19] | LEI H, ZHOU D, BAO Y, et al. Three-dimensional Improved Delayed Detached Eddy Simulation of a two-bladed vertical axis wind turbine[J]. Energy Conversion and Management, 2017, 133:235-248. |
[20] | NEWMARK N M. A method of computation for structural dynamics[J]. Journal of Engineering Mechanics Division, 1959, 85(3):67-94. |
[21] | 彭程, 薛恒丽, 陈永祁. 应用液体黏滞阻尼器的高层结构抗风工程设计方法与实例[J]. 工程抗震与加固改造, 2019, 41(4):14-22. |
[21] | PENG Cheng, XUE Hengli, CHEN Yongqi. Design methods and examples of wind resistant engineering for high-rise building with liquid viscous damper[J]. Earthquake Resistant Engineering and Retrofitting, 2019, 41(4):14-22. |
[22] | 国巍, 曾晨, 潘毅, 等. 基于增量动力分析法的高层建筑-阻尼器系统地震易损性分析[J]. 土木与环境工程学报(中英文), 2019, 41(4):59-68. |
[22] | GUO Wei, ZENG Chen, PAN Yi, et al. IDA based seismic fragility analysis of high-rise building-damper system[J]. Journal of Civil and Environmental Engineering, 2019, 41(4):59-68. |
[23] | 韩庆华, 郭凡夫, 刘铭劼, 等. 多维减振阻尼器力学性能研究[J]. 建筑结构学报, 2019, 40(10):69-77. |
[23] | HAN Qinghua, GUO Fanfu, LIU Mingjie, et al. Research on mechanical properties of multi-dimensional vibration control damper[J]. Journal of Building Structures, 2019, 40(10):69-77. |
[24] | 郑秀婷. 机翼模拟梁的动力学仿真分析[D]. 西安: 西安电子科技大学, 2013. |
[24] | ZHENG Xiuting. Dynamic simulation analysis of a wing analogy beam[D]. Xi'an:Xidian University, 2013. |
[25] | GHASEMIAN M, NEJAT A. Aerodynamic noise prediction of a Horizontal Axis Wind Turbine using Improved Delayed Detached Eddy Simulation and acoustic analogy[J]. Energy Conversion and Management, 2015, 99:210-220. |
/
〈 |
|
〉 |