自适应有限元结合弧长法求解软化问题

展开
  • 上海交通大学建筑工程与力学学院,上海  200030
陈肖峰(1976-),男,浙江台州人,硕士生,主要研究弹塑性自适应有限元.|王建华(联系人),男,教授,博士生导师,电话(Tel.): 021-62932915; E-mail: wjh417@sjtu.edu.cn.

收稿日期: 2002-12-18

  网络出版日期: 2021-04-25

Softening Materials Analysis by Combining Adaptive Mesh Generation Algotithm with Arc-Length Method

Expand
  • School of Civil Eng. and Mechanics, Shanghai Jiaotong Univ. , Shanghai 200030, China

Received date: 2002-12-18

  Online published: 2021-04-25

摘要

将自适应有限元与弧长法迭代算法相结合,用于软化材料的弹塑性有限元计算.讨论了程序中软化材料的弹塑性计算、本构积分、弧长法迭代、自适应有限元,得到了自适应有限元与弧长法结合计算软化问题的流程图.算例分析结果验证了本文分析方法的有效性,表明自适应有限元在模拟局部化问题中具有优势.

本文引用格式

陈肖峰, 王建华, 崔海勇 . 自适应有限元结合弧长法求解软化问题[J]. 上海交通大学学报, 2003 , 37(12) : 1916 -1918 . DOI: 10.16183/j.cnki.jsjtu.2003.12.024

Abstract

The paper presented a new method to implement the elastoplastic FEM analysis of softening materials by combining the algorithm of adaptive mesh generation with the algorithm of arc-length control procedures. The integration of elastoplasticity, arc-length control procedures and the algorithm of adaptive mesh generation were focused on. The flow chart of combining the algorithm of adaptive mesh generation with the algorithm of arc-length control procedures was offered. The numerical results confirm the efficiency of the present analysis method.

参考文献

[1] 郑宏. 岩土力学中的几类非线性问题[D]. 武汉: 中国科学院武汉岩土力学研究院, 2000.
[2] Crisfields M A. An arc-length method including line searches and accelerations[J]. International Journal of Numerical Methods in Engineering, 1983, 19: 1269-1289.
[3] Rikes E. An incremental approach to the solution of snapping and buckling problems[J]. International Journal of Solids and Structures, 1979, 15: 234-245.
[4] 钟峻彬. 自适应网格加密及其在岩土工程中的应用[D]. 上海: 上海交通大学建筑工程与力学学院, 1999.
[5] 钱家欢, 殷宗泽.土工原理与计算[M]. 北京: 中国水电水利出版社, 1996.
文章导航

/