压剪应力作用下复杂形状多裂纹应力强度因子

展开
  • 1.上海交通大学建筑工程与力学学院,上海  200030
    2.重庆大学土木工程学院,重庆  400045
周小平(1970-),男,江西瑞金人,博士,副教授,现主要从事岩土工程的科研和教学工作.电话(Tel.): 023-65405987; E-mail: zhouxiaopinga@sina.com.

收稿日期: 2002-09-08

  网络出版日期: 2021-04-25

基金资助

国家自然科学基金资助项目(59879012)

The Influence of Interaction of Complex Multicracks on Stress Intensity Factors

Expand
  • 1.School of Civil Eng. and Mechanics, Shanghai Jiaotong Univ. , Shanghai 200030, China
    2.School of Civil Eng. , Chongqing Univ. , Chongqing 400045

Received date: 2002-09-08

  Online published: 2021-04-25

摘要

探讨了压剪条件下复杂形状裂隙间的相互作用对应力强度因子的影响.利用裂纹孤立原理将原始问题分解为5个只含单一直裂纹的问题.根据裂纹表面应力自由的边界条件,利用伪力的Legendre多项式展开和连续分布位错使相互作用裂隙边界条件得以满足,最后推导了第1种Cauchy型和第1种Fredholm型奇异积分方程.该方法可以解决弯折裂纹、周期性排列的裂纹相互作用对应力强度因子的影响.数值结果表明,本文解与精确解、BEM解吻合较好,表明本方法是正确、可行的.

本文引用格式

周小平, 张永兴, 王建华, 哈秋聆 . 压剪应力作用下复杂形状多裂纹应力强度因子[J]. 上海交通大学学报, 2003 , 37(12) : 1905 -1909 . DOI: 10.16183/j.cnki.jsjtu.2003.12.022

Abstract

An extremly accurate and efficient numerical method for solving the problem was presented, which is mainly by means of the crack isolating analysis technique, stress superposition principle, the Legendre polynomial expansion of the pseudo-traction as well as the segmental average collocation technique. The singular equations of the Cauchy type and Fredholm integral equations of the first type were deduced. In the process of dealing with the superposition of infinite number of kinked cracks, the crack boundary conditions are satisfied. Many complex computing examples were given, and for some typical examples, numerical results were compared with the analytic solutions and the numerical solutions obtained by a boundary element method. The numerical results show that the stress intensity factors depend on the crack configuration, and on the geometrical and physical parameters.

参考文献

[1] 周小平. 裂隙岩体卸荷本构理论研究及应用[D]. 重庆: 重庆大学土木工程学院, 2000.
[2] Shaobeam M H, Landes J D. Numerical solutions for ductile fracture behavior of semielliptical surface crack[J]. Engineering Fracture Mechanics, 1999, 63: 131-145.
[3] Sabino D J. Trefftz boundary element method applied to fracture mechanics[J]. Engineering Fracture Mechanics, 1999, 64: 67-86.
[4] Shou Keh-Jian, Napier J A L. A two-dimensional linear variation displacement discontinuity method for three-layered elastic media[J]. International Journal of Rock Mechanics and Mining Sciences, 1999, 36: 719-730.
[5] Bobet A, Einstein H. Numerical modeling of fracture coalescence in a model rock material[J]. Int J Fract, 1998, 92: 221-252.
[6] Wilde A J, Aliabadi M H. A 3-D dual BEM formulation for the analysis of crack growth[J]. Engineering Fracture Mechanics, 1999, 62: 78-111.
[7] Horri H, Nemat-Nasser S. Compression-induced microcrack growth in brittle solids: Axial splitting and shear failure[J]. J Geophy Res, 1985, 90: 3105-3125.
[8] Lo K K. Analysis of branched cracks[J]. J Appl Mech, 1978, 45: 797-802.
[9] Basista M, Gross D A. Note on crack interaction under compression[J]. Int J Fract, 2000, 102: L67-L73.
[10] Niu J, Wu M S. Analysis of asymmetric kinked cracks of arbitrary size, location and orientation[J]. Int J Fract, 1998, 89: 19-57.
[11] Muskhelishvili N L. Some basic problems in the mathematical theory of elasticity [M]. Noordhoff: Groningen Press, 1953.
[12] Gerasoulis A. The use of quadratic polynomials for the solution of singular integral equations of cauchy type[J]. Computer & Mathmatics with Applications, 1982, 8: 15-22.
文章导航

/