序列二次规划(SQP)算法在三维下限分析中的应用

展开
  • 1.上海交通大学土木工程系,上海  200030
    2.上海市隧道研究所,上海  200014
杨洪杰(1972-),男,山东临沂人,博士,主要研究方向为土力学中的极限分析.电话(Tel.): 021-54740760; E-mail: dr_yang@sjtu.edu.cn.

收稿日期: 2003-03-17

  网络出版日期: 2021-04-25

Application of SQP Algorithm in 3D Lower Sequential Quadratic Programming Limit Analysis

Expand
  • 1.Dept. of Civil Eng. , Shanghai Jiaotong Univ. , Shanghai 200030, China
    2.Shanghai Tunnel Research Inst. , Shanghai 200014

Received date: 2003-03-17

  Online published: 2021-04-25

摘要

采用有限元法和非线性规划的序列二次规划(SQP)算法,解决了三维可静应力场的构造问题.基于刚塑性假设,采用极限分析下限原理,求解了矩形表面基础的承载力问题.算例分析表明,SQP算法在三维下限法中的应用是可行的.

本文引用格式

杨洪杰, 葛修润, 王建华, 傅德明 . 序列二次规划(SQP)算法在三维下限分析中的应用[J]. 上海交通大学学报, 2004 , 38(06) : 992 -995 . DOI: 10.16183/j.cnki.jsjtu.2004.06.031

Abstract

A statically admissible stress field was constructed by using nonlinear optimization sequential quadratic programming (SQP) algorithm and FEM. Based on the rigid plastic assumption for soil materials, adopting lower bound theorem, the bearing capacity of rectangular surface footing was calculated. The example indicates that the application of SQP algorithm is successful.

参考文献

[1] Bottero A. Finite element method and limit analysis theory for soil mechanics[J]. Comp Meth Appl Mech Eng, 1980, 22: 131-149.
[2] Sloan S W. Lower bound limit analysis using finite element and linear programming[J]. Int J Numer Anal Methods in Geomech, 1988, 12(1): 61-77.
[3] Michalowski R L. Upper bound load estimates on square and rectangular footings[J]. Geotechnique, 2001, 51(9): 787-798.
[4] 杨雪强. 用极限分析法研究饱和基础承载力三维问题[J]. 岩土工程学报, 1999, 20(3): 41-45.
[4] YANG Xue-qiang. Research 3D bearing capacity of footings using limit analysis method[J]. Chinese Journal of Geotechnical Engineer ing, 1999, 20(3): 41-45.
文章导航

/