二维弹塑性自然单元法算法实现

展开
  • 上海交通大学土木工程系,上海  200030
张英新(1978-),男,山东掖县人,硕士,主要研究方向为弹塑性自然单元法算法及程序实现.|王建华(联系人),男,教授,博士生导师,电话(Tel.): 021-62932915; E-mail: wjh417@sjtu.edu.cn.

收稿日期: 2004-04-28

  网络出版日期: 2021-04-25

The Computational Methods of Natural Element Method in Two Dimensional Elasto-Plastic Analysis

Expand
  • Dept. of Civil Eng. , Shanghai Jiaotong Univ. , Shanghai 200030, China

Received date: 2004-04-28

  Online published: 2021-04-25

摘要

为了使自然单元法能够应用于土体等具有弹塑性本构关系的材料的分析计算,通过结合弹塑性理论及自然单元法自身特点,研究了在自然单元法中采用Von-Mises、Mohr-Coulomb和Drucker-Prager屈服准则解决二维弹塑性问题的算法,并利用面向对象的程序设计方法编制了相应的计算程序.通过算例验证了各屈服准则下算法的正确性,证明了自然单元法相对于常规有限元算法在精度上的优势.在自然单元法中实现了Mohr-Coulomb和Drucker-Prager屈服准则,拓展了自然单元法的适用范围.

本文引用格式

张英新, 王建华, 高绍武 . 二维弹塑性自然单元法算法实现[J]. 上海交通大学学报, 2005 , 39(05) : 727 -730 . DOI: 10.16183/j.cnki.jsjtu.2005.05.015

Abstract

In order to make natural element method (NEM) be applied to calculate and analyse the elastoplastic material, through cosidering the essential elasto-plastic theory and the specialties of NEM, an algorithm for two dimensional elasto-plastic analysis based on the yield criteria of Von-Mises, Mohr-Coulomb and Drucker-Prager was presented. Each of them has an example to check its exactness and proves its advantage at precision. Those works enlarged the applicable range of NEM.

参考文献

[1] Braun J, Sambridge M. A numerical method for solving partial differential equations on highly irregular evolving grids[J]. Nature, 1995, 376: 655-660.
[2] Sukumar N, Moran B, Belytschko T. The nature element method in solid mechanics[J]. Int J Num Meth Eng, 1998, 43: 839-887.
[3] 王建华, 徐强勋, 张锐. 任意形状三维物体的Delaunay网格生成算法[J]. 岩石力学与工程学报, 2003, 22(5): 717-722.
[3] WANG Jiao-hua, XU Qiang-xun, ZHANG Rui. Delaunay algorithm and related procedure to generate the tetrahedron mesh for an object with arbitrary boundary[J]. Chinese Journal of Rock Mechanics and Engineering, 2003, 22(5): 717-722.
[4] 戴斌, 王建华. 自然单元法原理与三维算法实现[J]. 上海交通大学学报, 2004, 38(7): 1222-1224.
[4] DAI Bin, WANG Jian-hua. The natural element method and its computational algorithms in three dimensions[J]. Journal of Shanghai Jiaotong University, 2004, 38(7): 1222-1224.
[5] 蔡永昌, 朱合华, 王建华. 基于Voronoi结构的无网格局部Petrov-Galerkin方法[J]. 力学学报, 2002, 35(2): 187-193.
[5] CAI Yong-chang, ZHU He-hua, WANG Jian-hua. The meshless local Petrov-Galerkin method based on the voronoi cells[J]. Acta Mechanica Sinica, 2002, 35(2): 187-193.
[6] 徐斌. 弹塑性自然单元法及其面向对象的程序实现[D]. 上海: 同济大学土木工程学院, 2003.
[7] 宋天霞. 非线性结构有限元计算[M]. 武汉: 华中理工大学出版社, 1996.211-223.
文章导航

/