剪应力作用下断续节理岩体的强度特性

展开
  • 1.上海交通大学船舶海洋与建筑工程学院,上海  200030
    2.重庆大学土木工程学院,重庆  400045
周小平(1970-),男,江西瑞金人,博士,副教授,现主要从事岩土工程的科研和教学工作.电话(Tel.): 023-65401982; E-mail: cqxpzhou@hotmail.com.

收稿日期: 2004-04-16

  网络出版日期: 2021-04-25

The Strength Properties of Rock Masses with Intermittent Joints under Shear Stresses

Expand
  • 1.School of Naval Architecture, Ocean and Civil Eng. , Shanghai Jiaotong Univ. , Shanghai 200030, China
    2.School of Civil Eng. , Chongqing Univ. , Chongqing 400045

Received date: 2004-04-16

  Online published: 2021-04-25

摘要

利用裂纹孤立原理结合裂纹线场理论,研究剪应力作用下断续多节理线尖端的精确弹性区应力场和脆断区应力场,将精确弹性区应力场和脆断区应力场匹配,确定了脆断区长度和荷载之间的关系,继而从理论上确定了断续任意多节理岩体的强度.该方法可以解决任意多节理岩体的强度特性问题,而且得到的是精确的理论解.

本文引用格式

周小平, 王建华, 张永兴 . 剪应力作用下断续节理岩体的强度特性[J]. 上海交通大学学报, 2005 , 39(05) : 719 -722,726 . DOI: 10.16183/j.cnki.jsjtu.2005.05.013

Abstract

The crack isolating theory was proposed. On the basis of the crack isolating theory and the near crack line analysis method, the elasticplastic stress field near the crack line was analyzed, the laws that the length of the plastic zone along the crack line is varied with external loads were established by the matching condition of the elastic-plastic fields on the boundary, and the strength properties of rock masses were determined. The solution is a function of the geometry of the crack array. The results show that the strength of rock masses depends on the crack spacing, orientation of the cracks, the crack interface friction coefficient and the crack half-length. The conclusions are of important significance for rock masses engineering.

参考文献

[1] 周小平. 裂隙岩体受荷条件下的变形强度特性研究及其应用[R]. 上海: 上海交通大学船舶海洋与建筑工程学院, 2003.
[2] Nuller B, Karapetian E, Kachanov M. On the stress intensity factor for the elliptical crack[J]. International Journal of Fracture, 1998, 92(2): 15-20.
[3] Nemat-Nasser S, Horii H. Compression-induced nonplanar crack extension with application to splitting, exfoliation and rockburst[J]. Journal of Geophysics Research, 1979, 87(B8): 6805-6821.
[4] Niu J, Wu M S. Analysis of asymmetric kinked cracks of arbitrary size, location and orientation. PartⅠ. Remote compression[J]. Int J Fract, 1998, 89(1): 19-57.
[5] Doming ues J S, Portela A, Castro P M. Trefftz boundary element method applied to fracture mechanics[J]. Engineering Fracture Mechanics, 1999, 64(1): 67-86.
[6] Shou Keh-Jian, Napier J A L. A two-dimensional linear variation displacement discontinuity method for three-layered elastic media[J]. International Journal of Rock Mechanics and Mining Sciences, 1999, 36(6): 719-729.
[7] Bobet A, Einstein H. Numerical modeling of fracture coalescence in a model rock material[J]. Int J Fract, 1998, 92(3): 221-252.
[8] Zhou Xiao-ping, Ha Qiu-ling, Zhang Yong-xing, et al. Analysis of the deformation localization and the complete stress-strain relation for brittle rock subjectedRock Mech Min Sci, 2004, 41(2): 311-319.
[9] Horii H, Nemat-Nasser S. Brittle failure in compression: splitting, faulting and brittle-ductile transition[J]. Philosophical Transactions of Royal Society of London, 1986, 319(1549): 337-374.
[10] Wong R H C, Chau K T. Crack coalesence in a rock-like material containing two cracks[J]. Int J Rock Mech Min Sci, 1998, 35(2): 147-164.
[11] 周小平, 张永兴, 王建华,等.压剪应力作用下复杂形状多裂纹应力强度因子[J]. 上海交通大学学报, 2003, 37(12): 1905-1909.
[11] ZHOU Xiao-ping, ZHANG Yong-xing, WANG Jian-hua, et al. The influence of interaction of complex multicracks on stress intensity factors[J]. Journal of Shanghai Jiaotong University, 2003, 37(12): 1905-1909.
[12] Wang Jian-hua, Zhou Xiao-ping. Near crack line elastic-plastic analysis for a infinite plate loaded by two pairs of point tensile forces[J]. Mechanics Research Communications, 2004, 31(4): 415-420.
[13] Yi Zhi-jian. The new and analytical solutions for mode. Ⅲ. Crack in an elastic-perfectly-plastic material[J]. Engineering Fracture Mechanics, 1992, 42(5): 833-840.
[14] Germanovich L N, Dyskin A V. Fracture mechanisms and instability of openings in compression[J]. International Journal of Rock Mechanics and Mining Sciences, 2000, 37(1-2): 263-284.
文章导航

/