短峰波作用下饱和海床中的单桩响应分析

展开
  • 1.上海交通大学土木工程系
    2.上海交通大学海洋工程国家重点实验室,上海  200240
胡翔(1990-),男,湖北宜昌市人,硕士生,研究方向为岩土工程,E-mail:hxbksjtu@sjtu.edu.cn.|陈锦剑(联系人),男,博士,副教授,E-mail:chenjj@sjtu.edu.cn.

收稿日期: 2015-12-14

  网络出版日期: 2021-04-25

基金资助

国家自然科学基金项目(41372282);上海市浦江人才计划项目(13PJD017)

Analysis of a Single Pile Response in a Saturated Seabed Under Short-Crested Wave

Expand
  • 1.Department of Civil Engineering
    2.State Key Laboratory of Ocean Engineering, Shanghai Jiaotong University, Shanghai 200240, China

Received date: 2015-12-14

  Online published: 2021-04-25

摘要

采用准静态三维数值分析方法直接模拟短峰波作用于海床表面与桩身的三维波压力分布,在考虑了海床土体的流固耦合和桩土界面的接触特征的基础上,研究了短峰波荷载作用下饱和砂质海床中的单桩响应问题.根据数值分析结果,研究了波浪荷载作用下土体的孔压变化规律、桩柱的位移和弯矩分布情况,探讨了桩土接触面不同处理方式的影响,并与自由海床和完全埋置单桩的模型结果进行比较.结果表明:泥线附近与桩端处土体的响应局部现象明显;采用桩土耦合模型时,孔压与弯矩响应相比于接触面模型有放大效应,而位移响应则正好相反.完全埋置桩在波浪作用下的响应主要受海床影响,在桩柱伸出海面的模型中,波浪荷载在桩柱上的影响起主导作用.

本文引用格式

胡翔, 陈锦剑, 王建华 . 短峰波作用下饱和海床中的单桩响应分析[J]. 上海交通大学学报, 2016 , 50(11) : 1737 -1741 . DOI: 10.16183/j.cnki.jsjtu.2016.11.013

Abstract

A 3D FEM model of a single pile in saturated sandy seabed was proposed to study the reponse of pile. Meanwhile, the quasi-static method and fluid-soil coupling and contact behavior on interface was considered. Based on numerical results, responses of the pore water pressure and stress of seabed soil under wave was studied, and the deformation and internal force of the single pile were discussed. Besides, two different methods to model the pile-soil interface were discussed with a comparison of the free field seabed model and seabed model with a totally embeded pile. The results show that the pore water pressure increases significantly near the mudline and bottom of pile. Responses of pore pressure and bending moment are evidently larger in the coupling model, but the displacement response is smaller. Moreover, the totally embeded pile model is mainly affected by seabed, as the wave dominatedly acts on the model with a pile out of the seabed.

参考文献

[1] BEA R G, WRIGHT S G. Wave-induced slides in south pass block 70, Mississippi Delta[J]. Journal of Geotechnical Engineering, 1983, 109(4): 619-644.
[2] 赵刚. 胜利作业三号平台“9·7”倾斜事故分析[J]. 现代职业安全, 2011(7): 100-102.
[2] ZHAO Gang. Case study about“9·7”inclination of the Shengli No. 3work platform[J]. Mordern occupation safety, 2011(7): 100-102.
[3] YAMAMOTO T, KONING H L, SELLMEIJER H, et al. On the response of a pore-elastic bed to water waves[J]. Journal of Fluid Mechanics, 1978, 87(1): 193-206.
[4] JENG D S, HSU J R C. Wave-induced soil response in a nearly saturated seabed of finite thickness[J]. Geotechnique, 1996, 46(3): 427-440.
[5] TSAI C P, Wave-induced liquefaction potential in a porous seabed in front of a breakwater[J]. Ocean Eng, 1997, 24(10): 887-917.
[6] BHATTACHARYA S. Experimental validation of soil-structure interaction of offshore wind turbines[J]. Soil Dynamics and Earthquake Engineering, 2011, 31(5): 805-816.
[7] LI X J, GAO F P, YANG B. Wave-induced pore pressure and soil liquefaction around pile foundation[J]. International Journal of Offshore and Polar Engineering, 2011, 21(3): 233-239.
[8] JIANG L, WANG K H. Hydrodynamic interactions of cnoidal waves with a vertical cylinder[J]. Appl Ocean Res, 1996, 17(5): 277-289.
[9] MORISON J R, O’BRIEN M P, Johnson J W, et al. The forces exerted by surface waves on piles[J]. Petroleum Technol Petroleum Trans AIME, 1950, 2(5): 149-154.
[10] 胡翔, 陈锦剑. 波浪荷载下海底单桩与土共同作用的数值分析[J]. 岩土工程学报, 2015, 37(Z2): 217-221.
[10] HU Xiang, CHEN Jingjian. Numerical analysis of interactive behavior between pile and seabed soil under wave load[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(Z2): 217-221.
[11] JENG D S, CHA D H. Effects of dynamic soil behavior and save non-linearity on the wave-induced pore pressure and effective stresses in porous seabed[J]. Ocean Engineering, 2003, 30(16): 2065-2089.
[12] HSU J R C. Third-order approximation to short-crested waves[J]. Journal of Fluid Mechanics, 1979, 90(90): 179-196.
[13] 中华人民共和国交通运输部. 海港水文规范: JTJ213-98[S]. 北京: 人民交通出版社, 1998.
文章导航

/