工程与材料科学

如何实现固态材料变形制冷?

展开
  • 上海交通大学 材料科学与工程学院, 上海 200240

收稿日期: 2021-02-03

  网络出版日期: 2021-04-09

基金资助

国家自然科学基金项目(51871151,52022055,52031005),上海市自然科学基金项目(20ZR1428800)

How Does Deformation of Solid Material Induce Refrigeration?

Expand
  • School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China

Received date: 2021-02-03

  Online published: 2021-04-09

摘要

固态弹热制冷通过固-固相变潜热的交替吸收和释放实现制冷,具有能效高、温变较大和无制冷剂等特点,是非气-液压缩制冷首选技术.本文概述弹热效应的制冷机理及测量方法,归纳总结镍钛基、铜基、铁基和哈斯勒型形状记忆合金体系作为弹热制冷材料的研究现状、潜力和现尚存问题,并对形状记忆合金弹热制冷材料的应用前景进行展望,以期为固态弹热制冷技术的推广应用提供参考.

本文引用格式

肖飞,金学军 . 如何实现固态材料变形制冷?[J]. 上海交通大学学报, 2021 , 55(Sup.1) : 95 -96 . DOI: 10.16183/j.cnki.jsjtu.2021.S1.002

Abstract

The solid-elastocaloric refrigeration effect, characterized by high energy efficiency, large temperature change, and no refrigerant needed, is the preferred candidate of the non gas-liquid compression refrigeration technology, which takes advantage of the alternate absorption and the release of latent heat of solid-solid phase transformation to realize refrigeration. This paper describes the mechanism and test methods of the elastocaloric effect, and summarizes the research progress and problems in the Ti-Ni-based, Cu-based, Fe-based, and Heusler-type shape memory alloy as elastocaloric material. Moreover, it anticipates the research directions of the elastocaloric refrigeration materials based on the shape memory alloy, so as to enhance the application of the solid-elastocaloric refrigeration technology.

参考文献

[1]COULOMB D, DUPONT J L, PICHARD A. The role of refrigeration in the global economy [R]. Malesherbes: International Institute of Refrigeration, 2015. [2]CALM J M. The next generation of refrigerants: Historical review, considerations, and outlook[J]. International Journal of Refrigeration, 2008, 31(7): 1123-1133. [3]GOETZLER W, ZOGG R, YOUNG J, et al. Energy savings potential and RD&D opportunities for non-vapor-compression HVAC technologies [R]. Burlington: Navigant Consulting Incorporated, 2014. [4]CUI J, WU Y, MUEHLBAUER J, et al. Demonstration of high efficiency elastocaloric cooling with large ΔT using NiTi wires[J]. Applied Physics Letters, 2012, 101(7): 1175-1178. [5]CHEN H, XIAO F, LIANG X, et al. Stable and large superelasticity and elastocaloric effect in nanocrystalline Ti-44Ni-5Cu-1Al (at%) alloy[J]. Acta Materialia, 2018, 158: 330-339. [6]MIYAZAKI S, OTSUKA K. Development of shape memory alloys[J]. ISIJ International, 1989, 29(5): 353-377. [7]MAKI T, TAMURA I. On the thin plate martensite in ferrous alloys and it’s various properties[J]. Bulletin of Japan Institute of Metals, 1984, 23(4): 229-237. [8]LIU J, GOTTSCHALL T, SKOKOV K P, et al. Giant magnetocaloric effect driven by structural transitions[J]. Nature Materials, 2012, 11(7): 620-626.
文章导航

/