在人口增长、耕地减少、气候变化等因素影响下,农业灌溉水源的供需矛盾日渐突出.在沙漠地区,如何有效获得水资源和实现节水节能种植将是实现可持续发展必须破解的难题.吸附式空气取水技术可以摆脱地理位置限制,从空气中捕获可观的淡水资源,为农业发展提供可持续的灌溉水源.在温室场景中,空气取水机组能够从潮湿的室内空气中吸附水蒸气,调节温室室内湿度,同时释放吸附热用于温室加热.解吸过程中收集的水,可以循环用于温室灌溉.该技术有望应用于都市农业,并为沙漠变绿洲提供支持.
The contradiction between supply and demand of agricultural irrigation water is becoming increasingly prominent under the influence of population growth, cultivated land reduction, climate change and so on. Especially in the desert areas, the sustainable development requires effective access to water resources and the realization of water-saving and energy-saving planting. The technology of adsorption-based atmospheric water harvesting can get rid of the limitation of geographical location and capture considerable fresh water resources from the air, providing sustainable irrigation water for agriculture development. In the application scenario of greenhouses, the water harvesting device can adsorb the vapor from the moist air, regulate indoor humidity, and release adsorption heat. The water collected in the desorption process could be recycled for greenhouse irrigation. Furthermore, the technology would be potentially applied in urban farming and desert bloom.
[1]TILMAN D, BALZER C, HILL J, et al. Global food demand and the sustainable intensification of agriculture[J]. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(50): 20260-20264.[2]KIM H, YANG S, RAO S R, et al. Water harvesting from air with metal-organic frameworks powered by natural sunlight[J]. Science, 2017, 356(6336): 430-434.