基于支持向量机的办公建筑逐时能耗预测

展开
  • 上海交通大学 制冷与低温工程研究所,上海  200240
肖冉(1996-), 男,四川省广安市人,硕士生,主要研究方向为智慧建筑与建筑节能.

收稿日期: 2019-10-25

  网络出版日期: 2021-04-02

基金资助

国家重点研发计划(2017YFC0704200)

Hourly Energy Consumption Forecasting for Office Buildings Based on Support Vector Machine

Expand
  • Institute of Refrigeration and Cryogenics, Shanghai Jiao Tong University, Shanghai 200240, China

Received date: 2019-10-25

  Online published: 2021-04-02

摘要

针对建筑运行能耗非线性和不确定性强的特点,提出一种基于支持向量机的办公建筑逐时能耗预测方法. 采用单变量模型检验法确定模型输入变量,引入网格搜索方法优化模型超参数. 使用模型拟合误差的置信区间来描述建筑运行能耗的不确定性. 采用实际办公楼案例对所提出的预测方法进行验证. 结果表明:网格搜索优化后的模型平均绝对百分比误差(MAPE)降低31.3%, 取得更高的模型精度; 加入置信区间后不同季节中MAPE均低于1.5%, 体现了建筑的运行波动. 该方法可为建筑运行诊断及优化提供参考.

本文引用格式

肖冉, 魏子清, 翟晓强 . 基于支持向量机的办公建筑逐时能耗预测[J]. 上海交通大学学报, 2021 , 55(3) : 331 -336 . DOI: 10.16183/j.cnki.jsjtu.2019.310

Abstract

Aimed at the nonlinearity and uncertainty of building energy consumption, a forecasting approach based on the support vector machine is proposed in this paper for the prediction of hourly energy consumption of an office building. The univariate model test is used to determine the input parameters. Superior model hyper-parameters are found by grid search optimization. The confidence interval of the model fitting error is applied to describe the uncertainty of building energy consumption. A case study is conducted using the data collected from an actual office building to verify the proposed approach. The results show that the overall mean absolute percentage error (MAPE) of the model after grid search optimization is reduced by 31.3%, and a higher model precision is achieved. After combining the prediction with the confidence interval, MAPE is found to be lower than 1.5% in different seasons and the building operation fluctuations are embodied. This approach can be used in the diagnosis and optimization of building operation.

参考文献

[1] 中国建筑节能协会能耗统计专委会. 2018中国建筑能耗研究报告[J]. 建筑,2019(2): 26-31.
[1] China Association of Building Energy Efficiency. 2018 China building energy research report[J]. Construction and Architecture, 2019(2): 26-31.
[2] 刘海静,潘毅群. 区域建筑群负荷预测及其平准化分析[J]. 暖通空调,2017, 47(4): 14-18.
[2] LIU Haijing, PAN Yiqun. Load prediction and leveling analysis for community buildings[J]. Heating Ventilating & Air Conditioning, 2017, 47(4): 14-18.
[3] AFRAM A, JANABI S F, FUNG A S, et al. Artificial neural network (ANN) based model predictive control (MPC)and optimization of HVAC systems: A state of the art review and case study of a residential HVAC system[J]. Energy and Buildings, 2017(141): 96-113.
[4] FOUCQUIER A, ROBERT S, SUARD F, et al. State of the art in building modelling and energy performances prediction: A review[J]. Renewable and Sustainable Energy Reviews, 2013(23): 272-288.
[5] 李紫微,林波荣,陈洪钟. 建筑方案能耗快速预测方法研究综述[J]. 暖通空调,2018, 48(5): 1-8.
[5] LI Ziwei, LIN Borong, CHEN Hongzhong. Review of rapid prediction method of building energy consumption[J]. Heating Ventilating & Air Conditioning, 2018, 48(5): 1-8.
[6] LI X W, WEN J. Review of building energy modeling for control and operation[J]. Renewable and Sustainable Energy Reviews, 2014, 37: 517-537.
[7] BOURDEAU M, ZHAI X Q, NEFZAOUI E, et al. Modeling and forecasting building energy consumption: A review of data-driven techniques[J]. Sustainable Cities and Society, 2019, 48: 101533.
[8] 侯博文,谭泽汉,陈焕新,等. 基于支持向量机的建筑能耗预测研究[J]. 制冷技术,2019, 39(2): 1-6.
[8] HOU Bowen, TAN Zehan, CHEN Huanxin, et al. Research on building energy consumption prediction based on support vector machine[J]. Chinese Journal of Refrigeration Technology, 2019, 39(2): 1-6.
[9] AHMAD T, CHEN H X, GUO Y B, et al. A comprehensive overview on the data driven and large scale based approaches for forecasting of building energy demand: A review[J]. Energy and Buildings, 2018, 165: 301-320.
[10] QUAN H, SRINIVASAN D, KHOSRAVI A. Uncertainty handling using neural network-based prediction intervals for electrical load forecasting[J]. Energy, 2014, 73(7): 916-925.
[11] PRODREGOSA F, et al. Scikit-learn: Machine learning in Python[J]. Journal of Machine Learning Research, 2011(12): 2825-2830.
[12] CORTES C, VAPNIK V. Support-vector networks[J]. Machine Learning, 1995, 20(3): 273-297.
[13] SMOLA A J, SCH?LKOPF B. A tutorial on support vector regression[J]. Statistics and Computing, 2004, 14(3): 199-222.
[14] IOWA STATE UNIVERSITY. Iowa environmental mesonet [DB/OL]. (2019-10-15) [2019-10-22]. .
[15] SEABOLD S, PERKTOLD J. Statsmodels: Econometric and statistical modeling with Python [EB/OL]. (2010)[2019-10-22]. .
文章导航

/