基于显式动力学的软式飞艇流固耦合计算框架
收稿日期: 2019-12-04
网络出版日期: 2021-04-02
基金资助
国家自然科学基金(61733017);上海市自然科学基金(18ZR1419000)
Fluid-Structure Interaction Calculation Framework for Non-Rigid Airship Based on Explicit Dynamics
Received date: 2019-12-04
Online published: 2021-04-02
软式飞艇作为一种低刚度、具有充气结构的飞行器,其流固耦合特性明显.结合参数化截面(PARSEC)方法、径向基函数(RBF)和Delaunay映射方法,构建对软式飞艇的非定常显式动力学流固耦合分析框架.借助平板冲击和NACA0014机翼气动弹性案例验证该数值方法的可靠性和精度.该计算框架也同样适用于高空气球等薄膜类浮空器的非定常双向流固耦合分析.最后,应用上述框架对某软式飞艇在不同压差下的结构响应进行分析.研究结果表明,飞艇振动主频与飞艇的内外压差之间呈现近似线性关系.
关键词: 软式飞艇; 流固耦合; 径向基函数; Delaunay映射; 参数化截面
张宇, 王晓亮 . 基于显式动力学的软式飞艇流固耦合计算框架[J]. 上海交通大学学报, 2021 , 55(3) : 311 -319 . DOI: 10.16183/j.cnki.jsjtu.2019.351
The non-rigid airship is a low-rigidity and inflatable aircraft which has obvious fluid-structure interaction characteristics. In this paper, the unsteady explicit dynamic fluid-structure interaction analysis framework of non-rigid airship is constructed based on the parametric section (PARSEC) method, the radial basis function (RBF), and the Delaunay mapping method. The reliability and accuracy of the numerical method are verified by the cases of plate impact and the aeroelasticity of NACA0014 wing. The calculation framework is also suitable for unsteady bidirectional fluid-structure interaction analysis of thin-envelope aerostats such as high-altitude balloon. Finally, the time domain and frequency domain responses of one non-rigid airship are simulated by the above framework. The research results show that there is an approximately linear relationship between the dominant frequency of vibration and the pressure difference of the airship.
[1] | LIU P, FU G Y, ZHU L J, et al. Aerodynamic characteristics of airship Zhiyuan-1[J]. Journal of Shanghai Jiao Tong University (Science), 2013, 18(6): 679-687. |
[2] | ALINA K, ERNESTO D, SARAH M, et al. The 20-20-20 airship challenge [RB/OL]. (2014-06-30) [2019-06-10]. . |
[3] | 赵达,刘东旭,孙康文,等. 平流层飞艇研制现状、技术难点及发展趋势[J]. 航空学报,2016, 37(1): 45-56. |
[3] | ZHAO Da, LIU Dongxu, SUN Kangwen, et al. Research status, technical difficulties and development trend of stratospheric airship[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(1): 45-56. |
[4] | LU L L, SONG H W, WANG Y W, et al. Deformation behavior of non-rigid airships in wind tunnel tests[J]. Chinese Journal of Aeronautics, 2019, 32(3): 611-618. |
[5] | LEE N, LEE S, CHO H, et al. Effect of flexibility on flapping wing characteristics in hover and forward flight[J]. Computers & Fluids, 2018, 173: 111-117. |
[6] | DE NAYER G, APOSTOLATOS A, WOOD J N, et al. Numerical studies on the instantaneous fluid-structure interaction of an air-inflated flexible membrane in turbulent flow[J]. Journal of Fluids and Structures, 2018, 82: 577-609. |
[7] | BESSERT N, FREDERICH O. Nonlinear airship aeroelasticity[J]. Journal of Fluids and Structures, 2005, 21(8): 731-742. |
[8] | 王晓亮,单雪雄,陈丽. 平流层飞艇流固耦合分析方法研究[J]. 宇航学报,2011, 32(1): 22-28. |
[8] | WANG Xiaoliang, SHAN Xuexiong, CHEN Li. Study on fluid-structure coupled computational method for stratosphere airship[J]. Journal of Astronautics, 2011, 32(1): 22-28. |
[9] | LIU J M, LU C J, XUE L P. Numerical investigation on the aeroelastic behavior of an airship with hull-fin configuration[J]. Journal of Hydrodynamics, 2010, 22(2): 207-213. |
[10] | 吴小翠,王一伟,黄晨光,等. 刚度构型对飞艇定常流固耦合特性的影响研究[J]. 工程力学,2016, 33(2): 34-40. |
[10] | WU Xiaocui, WANG Yiwei, HUANG Chenguang, et al. Effects of stiffness on the characteristics of steady fluid-structure interactions of an airship[J]. Engineering Mechanics, 2016, 33(2): 34-40. |
[11] | WANG S Y, SUN G, CHEN W C, et al. Database self-expansion based on artificial neural network: An approach in aircraft design[J]. Aerospace Science and Technology, 2018, 72: 77-83. |
[12] | CHEN J, PAN X, WANG C X, et al. Airfoil parameterization evaluation based on a modified PARASEC method for a H-Darrious rotor[J]. Energy, 2019, 187: 115910. |
[13] | WANG Y B, QIN N, ZHAO N. Delaunay graph-based moving mesh method with damping functions[J]. Chinese Journal of Aeronautics, 2018, 31(11): 2093-2103. |
[14] | ROMANI L, ROSSINI M, SCHENONE D. Edge detection methods based on RBF interpolation[J]. Journal of Computational and Applied Mathematics, 2019, 349: 532-547. |
[15] | 叶正寅,张伟伟,史爱明,等. 流固耦合力学基础及其应用[M]. 哈尔滨: 哈尔滨工业大学出版社,2010. |
[15] | YE Zhengyin, ZHANG Weiwei, SHI Aiming, et al. Fundamentals of fluid-structure coupling and its application[M]. Harbin: Harbin Institute of Technology Press, 2010. |
[16] | FRAUNHOFER SCAI. MpCCI coupling environment. Part I—Overview [EB/OL]. (2018-05-04) [2019-10-12]. . |
[17] | 邱振宇,陈务军,赵兵,等. 飞艇主气囊结构湿模态分析与试验研究[J]. 振动与冲击,2017, 36(12): 61-67. |
[17] | QIU Zhenyu, CHEN Wujun, ZHAO Bing, et al. Wet modal analysis and experiment study on an airship envelop[J]. Journal of Vibration and Shock, 2017, 36(12): 61-67. |
/
〈 |
|
〉 |