一种经皮无线供能系统

展开
  • 中国计量大学 机电工程学院,杭州  310018
谢岳(1964-),男,江苏省苏州市人,教授,现主要从事电力电子功率变换和电气测量技术研究.电话(Tel.):0571-86835734;E-mail:xieyue@cjlu.edu.cn.

收稿日期: 2019-10-23

  网络出版日期: 2021-03-03

A Wireless Transcutaneous Energy Transfer System

Expand
  • Institute of Mechanical and Electrical Engineering, China Jiliang University, Hangzhou 310018, China

Received date: 2019-10-23

  Online published: 2021-03-03

摘要

研究了一种经皮无线供能系统.首先通过电路分析得到系统电压增益和传输效率等特性函数,同时根据经皮无线供能典型技术参数进行特性分析,在此基础上设计了基于能量注入的变频恒压控制方案,使得无线供能系统在负载和传输距离变化时始终高效率运行.搭建了经皮无线供能的实验系统,实验结果验证了理论分析和设计方案的正确性,在固定传输距离的整个负载变化范围内整机效率基本保持恒定,典型传输距离内的整机效率达到83%以上.利用多物理场仿真软件进行人体组织安全性仿真实验,仿真结果表明最大电场强度、比吸收率和最高温度均低于限值.

本文引用格式

谢岳, 沈鹏飞, 蒋晓丽 . 一种经皮无线供能系统[J]. 上海交通大学学报, 2021 , 55(2) : 196 -205 . DOI: 10.16183/j.cnki.jsjtu.2019.303

Abstract

A wireless transcutaneous energy transfer (TET) system is researched. The characteristic functions of system voltage gain and transmission efficiency are obtained by circuit analysis. Meanwhile, according to the typical technical parameters of the TET system, a characteristic analysis is conducted. Therefore, based on the energy injection technique, a variable frequency constant voltage control method is proposed which enables the TET system to operate at a high efficiency all time when both the load and the transfer distance change. The experimental set of the TET system is arranged. The experimental results have verified the correctness of the theoretical analysis and design scheme. When the transfer distance is fixed, the overall efficiency remains constant in the whole load variation range. The overall efficiency of the TET system is above 83% within typical transfer distances. The multi-physics simulation software is used to simulate the human tissue safety. The simulation results show that the maximum electric field strength, the specific absorption rate, and the maximum temperature are lower than their corresponding limitations.

参考文献

[1] 尹成科,徐博翎. 植入式人工心脏无线电能传输研究进展[J]. 电工技术学报,2015, 30(19): 103-109.
[1] YIN Chengke, HSU Polin. Wireless power transfer for implantable ventricular assistance: A review[J]. Transactions of China Electrotechnical Society, 2015, 30(19): 103-109.
[2] FRIEDMANN J, GROEDL F, KENNEL R. A novel universal control scheme for transcutaneous energy transfer (TET) applications[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2015, 3(1): 296-305.
[3] KNECHT O, BOSSHARD R, KOLAR J W. High-efficiency transcutaneous energy transfer for implantable mechanical heart support systems[J]. IEEE Transactions on Power Electronics, 2015, 30(11): 6221-6236.
[4] UNTHAN K, GR?F F, LAUMEN M, et al. Design and evaluation of a fully implantable control unit for blood pumps[J]. BioMed Research International, 2015, 2015: 257848.
[5] TANG S C, LUN T L T, GUO Z Y, et al. Intermediate range wireless power transfer with segmented coil transmitters for implantable heart pumps[J]. IEEE Transactions on Power Electronics, 2017, 32(5): 3844-3857.
[6] WANG J X, SMITH J R, BONDE P. Energy transmission and power sources for mechanical circulatory support devices to achieve total implantability[J]. The Annals of Thoracic Surgery, 2014, 97(4): 1467-1474.
[7] LATHA M S H, MAKKENA S. A novel transcutaneous energy transfer technique for biomedical implants[C]∥Innovations in Power and Advanced Computing Technologies. Vellore, India. IEEE, 2017: 1-5.
[8] MIURA H, YAMADA A, SHIRAISHI Y, et al. Fundamental analysis and development of the current and voltage control method by changing the driving frequency for the transcutaneous energy transmission system[C]∥Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). Milan, Italy: IEEE, 2015: 1319-1322.
[9] ENSSLE A, HEINRICH J, PARSPOUR N. Analytical procedure for dimensioning transcutaneous inductive energy transfer systems[C]∥Brazilian Power Electronics Conference. Juiz de Fora, Brazil: IEEE, 2017: 1-5.
[10] 李达伟,姜萍萍,柯全,等. 肠道机器人无线能量发射系统优化设计[J]. 上海交通大学学报,2018, 52(9): 1031-1037.
[10] LI Dawei, JIANG Pingping, KE Quan, et al. Optimal design of wireless power transfer system for gastrointestinal robots[J]. Journal of Shanghai Jiao Tong University, 2018, 52(9): 1031-1037.
[11] KNECHT O, KOLAR J W. Performance evaluation of series-compensated IPT systems for transcutaneous energy transfer[J]. IEEE Transactions on Power Electronics, 2019, 34(1): 438-451.
[12] WANG B, HU A P, BUDGETT D. Power flow control based solely on slow feedback loop for heart pump applications[J]. IEEE Transactions on Biomedical Circuits and Systems, 2012, 6(3): 279-286.
[13] KNECHT O, KOLAR J W. Impact of Transcutaneous Energy Transfer on the electric field and specific absorption rate in the human tissue[C]∥Annual Conference of the IEEE Industrial Electronics Society (IECON). Yokohama, Japan: IEEE, 2015: 4977-4983.
[14] XIAO C Y, CHENG D N, WEI K Z. An LCC-C compensated wireless charging system for implantable cardiac pacemakers: Theory, experiment, and safety evaluation[J]. IEEE Transactions on Power Electronics, 2018, 33(6): 4894-4905.
[15] 昝鹏,张春东,刘颜凯等. 基于经皮能量传输的人工肛门括约肌生物电磁相容性研究[J]. 上海交通大学学报,2018, 52(8): 997-1002.
[15] ZAN Peng, ZHANG Chundong, LIU Yankai, et al. Research on bio-electromagnetic compatibility of artificial anal sphincter based on transcutaneous energy transfer[J]. Journal of Shanghai Jiao Tong University, 2018, 52(8): 997-1002.
[16] 宫飞翔,魏志强,殷波,等. 人体植入式设备谐振耦合无线传能线圈优化设计[J]. 中国海洋大学学报,2016, 46(10): 129-134.
[16] GONG Feixiang, WEI Zhiqiang, YIN Bo, et al. Optimization design of coil for WPT system based on resonance coupling of human implantable devices[J]. Periodical of Ocean University of China, 2016, 46(10): 129-134.
[17] 苏玉刚,陈苓芷,唐春森,等. 基于NSGA-II算法的ECPT系统PID参数寻优及输出稳压控制[J]. 电工技术学报,2016, 31(19): 106-114.
[17] SU Yugang, CHEN Lingzhi, TANG Chunsen, et al. Evolutionary multi-objective optimization of PID parameters for output voltage regulation in ECPT system based on NSGA-II[J]. Transactions of China Electrotechnical Society, 2016, 31(19): 106-114.
[18] 李青峰,陈少波,王伟明,等. 有源植入系统的磁耦合能量传输参数优化[J]. 清华大学学报(自然科学版), 2015, 55(3): 351-355.
[18] LI Qingfeng, CHEN Shaobo, WANG Weiming, et al. Parameter optimization of magnetic coupling energy transfer for active implantable systems[J]. Journal of Tsinghua University (Science and Technology), 2015, 55(3): 351-355.
[19] OGGIER G G, ORDONEZ M. High-efficiency DAB converter using switching sequences and burst mode[J]. IEEE Transactions on Power Electronics, 2016, 31(3): 2069-2082.
[20] 陶成轩. 非接触式电能传输系统的输出控制策略研究[D]. 重庆: 重庆大学,2012.
[20] TAO Chengxuan. Study on the strategy of output control for CPT system [D]. Chongqing: Chongqing University, 2012.
[21] 孙跃,张路,王智慧,等. 交流包络调制无线电能传输系统的负载稳压输出研究[J]. 电力系统自动化,2017, 41(2): 33-37.
[21] SUN Yue, ZHANG Lu, WANG Zhihui, et al. Constant voltage output of wireless power transfer system based on AC envelope modulation[J]. Automation of Electric Power Systems, 2017, 41(2): 33-37.
[22] GABRIEL S, LAU R W, GABRIEL C. The dielectric properties of biological tissues: III. Parametric models for the dielectric spectrum of tissues[J]. Physics in Medicine and Biology, 1996, 41(11): 2271-2293.
文章导航

/