一种经皮无线供能系统
收稿日期: 2019-10-23
网络出版日期: 2021-03-03
A Wireless Transcutaneous Energy Transfer System
Received date: 2019-10-23
Online published: 2021-03-03
谢岳, 沈鹏飞, 蒋晓丽 . 一种经皮无线供能系统[J]. 上海交通大学学报, 2021 , 55(2) : 196 -205 . DOI: 10.16183/j.cnki.jsjtu.2019.303
A wireless transcutaneous energy transfer (TET) system is researched. The characteristic functions of system voltage gain and transmission efficiency are obtained by circuit analysis. Meanwhile, according to the typical technical parameters of the TET system, a characteristic analysis is conducted. Therefore, based on the energy injection technique, a variable frequency constant voltage control method is proposed which enables the TET system to operate at a high efficiency all time when both the load and the transfer distance change. The experimental set of the TET system is arranged. The experimental results have verified the correctness of the theoretical analysis and design scheme. When the transfer distance is fixed, the overall efficiency remains constant in the whole load variation range. The overall efficiency of the TET system is above 83% within typical transfer distances. The multi-physics simulation software is used to simulate the human tissue safety. The simulation results show that the maximum electric field strength, the specific absorption rate, and the maximum temperature are lower than their corresponding limitations.
[1] | 尹成科,徐博翎. 植入式人工心脏无线电能传输研究进展[J]. 电工技术学报,2015, 30(19): 103-109. |
[1] | YIN Chengke, HSU Polin. Wireless power transfer for implantable ventricular assistance: A review[J]. Transactions of China Electrotechnical Society, 2015, 30(19): 103-109. |
[2] | FRIEDMANN J, GROEDL F, KENNEL R. A novel universal control scheme for transcutaneous energy transfer (TET) applications[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2015, 3(1): 296-305. |
[3] | KNECHT O, BOSSHARD R, KOLAR J W. High-efficiency transcutaneous energy transfer for implantable mechanical heart support systems[J]. IEEE Transactions on Power Electronics, 2015, 30(11): 6221-6236. |
[4] | UNTHAN K, GR?F F, LAUMEN M, et al. Design and evaluation of a fully implantable control unit for blood pumps[J]. BioMed Research International, 2015, 2015: 257848. |
[5] | TANG S C, LUN T L T, GUO Z Y, et al. Intermediate range wireless power transfer with segmented coil transmitters for implantable heart pumps[J]. IEEE Transactions on Power Electronics, 2017, 32(5): 3844-3857. |
[6] | WANG J X, SMITH J R, BONDE P. Energy transmission and power sources for mechanical circulatory support devices to achieve total implantability[J]. The Annals of Thoracic Surgery, 2014, 97(4): 1467-1474. |
[7] | LATHA M S H, MAKKENA S. A novel transcutaneous energy transfer technique for biomedical implants[C]∥Innovations in Power and Advanced Computing Technologies. Vellore, India. IEEE, 2017: 1-5. |
[8] | MIURA H, YAMADA A, SHIRAISHI Y, et al. Fundamental analysis and development of the current and voltage control method by changing the driving frequency for the transcutaneous energy transmission system[C]∥Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). Milan, Italy: IEEE, 2015: 1319-1322. |
[9] | ENSSLE A, HEINRICH J, PARSPOUR N. Analytical procedure for dimensioning transcutaneous inductive energy transfer systems[C]∥Brazilian Power Electronics Conference. Juiz de Fora, Brazil: IEEE, 2017: 1-5. |
[10] | 李达伟,姜萍萍,柯全,等. 肠道机器人无线能量发射系统优化设计[J]. 上海交通大学学报,2018, 52(9): 1031-1037. |
[10] | LI Dawei, JIANG Pingping, KE Quan, et al. Optimal design of wireless power transfer system for gastrointestinal robots[J]. Journal of Shanghai Jiao Tong University, 2018, 52(9): 1031-1037. |
[11] | KNECHT O, KOLAR J W. Performance evaluation of series-compensated IPT systems for transcutaneous energy transfer[J]. IEEE Transactions on Power Electronics, 2019, 34(1): 438-451. |
[12] | WANG B, HU A P, BUDGETT D. Power flow control based solely on slow feedback loop for heart pump applications[J]. IEEE Transactions on Biomedical Circuits and Systems, 2012, 6(3): 279-286. |
[13] | KNECHT O, KOLAR J W. Impact of Transcutaneous Energy Transfer on the electric field and specific absorption rate in the human tissue[C]∥Annual Conference of the IEEE Industrial Electronics Society (IECON). Yokohama, Japan: IEEE, 2015: 4977-4983. |
[14] | XIAO C Y, CHENG D N, WEI K Z. An LCC-C compensated wireless charging system for implantable cardiac pacemakers: Theory, experiment, and safety evaluation[J]. IEEE Transactions on Power Electronics, 2018, 33(6): 4894-4905. |
[15] | 昝鹏,张春东,刘颜凯等. 基于经皮能量传输的人工肛门括约肌生物电磁相容性研究[J]. 上海交通大学学报,2018, 52(8): 997-1002. |
[15] | ZAN Peng, ZHANG Chundong, LIU Yankai, et al. Research on bio-electromagnetic compatibility of artificial anal sphincter based on transcutaneous energy transfer[J]. Journal of Shanghai Jiao Tong University, 2018, 52(8): 997-1002. |
[16] | 宫飞翔,魏志强,殷波,等. 人体植入式设备谐振耦合无线传能线圈优化设计[J]. 中国海洋大学学报,2016, 46(10): 129-134. |
[16] | GONG Feixiang, WEI Zhiqiang, YIN Bo, et al. Optimization design of coil for WPT system based on resonance coupling of human implantable devices[J]. Periodical of Ocean University of China, 2016, 46(10): 129-134. |
[17] | 苏玉刚,陈苓芷,唐春森,等. 基于NSGA-II算法的ECPT系统PID参数寻优及输出稳压控制[J]. 电工技术学报,2016, 31(19): 106-114. |
[17] | SU Yugang, CHEN Lingzhi, TANG Chunsen, et al. Evolutionary multi-objective optimization of PID parameters for output voltage regulation in ECPT system based on NSGA-II[J]. Transactions of China Electrotechnical Society, 2016, 31(19): 106-114. |
[18] | 李青峰,陈少波,王伟明,等. 有源植入系统的磁耦合能量传输参数优化[J]. 清华大学学报(自然科学版), 2015, 55(3): 351-355. |
[18] | LI Qingfeng, CHEN Shaobo, WANG Weiming, et al. Parameter optimization of magnetic coupling energy transfer for active implantable systems[J]. Journal of Tsinghua University (Science and Technology), 2015, 55(3): 351-355. |
[19] | OGGIER G G, ORDONEZ M. High-efficiency DAB converter using switching sequences and burst mode[J]. IEEE Transactions on Power Electronics, 2016, 31(3): 2069-2082. |
[20] | 陶成轩. 非接触式电能传输系统的输出控制策略研究[D]. 重庆: 重庆大学,2012. |
[20] | TAO Chengxuan. Study on the strategy of output control for CPT system [D]. Chongqing: Chongqing University, 2012. |
[21] | 孙跃,张路,王智慧,等. 交流包络调制无线电能传输系统的负载稳压输出研究[J]. 电力系统自动化,2017, 41(2): 33-37. |
[21] | SUN Yue, ZHANG Lu, WANG Zhihui, et al. Constant voltage output of wireless power transfer system based on AC envelope modulation[J]. Automation of Electric Power Systems, 2017, 41(2): 33-37. |
[22] | GABRIEL S, LAU R W, GABRIEL C. The dielectric properties of biological tissues: III. Parametric models for the dielectric spectrum of tissues[J]. Physics in Medicine and Biology, 1996, 41(11): 2271-2293. |
/
〈 |
|
〉 |